Quantum Bochner's theorem for phase spaces built on projective representations

被引:4
作者
Dangniam, Ninnat [1 ]
Ferrie, Christopher [1 ,2 ]
机构
[1] Univ New Mexico, Ctr Quantum Informat & Control, Albuquerque, NM 87131 USA
[2] Univ Sydney, Sch Phys, Ctr Engn Quantum Syst, Sydney, NSW 2006, Australia
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Wigner function; quasi-probability; phase space; projective representation; WIGNER-FUNCTION;
D O I
10.1088/1751-8113/48/11/115305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bochner's theorem gives the necessary and sufficient conditions on a function such that its Fourier transform corresponds to a true probability density function. In the Wigner phase space picture, quantum Bochner's theorem gives the necessary and sufficient conditions on a function such that it is a quantum characteristic function of a valid (and possibly mixed) quantum state and such that its Fourier transform is a true probability density. We extend this theorem to discrete phase space representations which possess enough symmetry. More precisely, we show that discrete phase space representations that are built on projective unitary representations of abelian groups, with a slight restriction on admissible two-cocycles, enable a quantum Bochner's theorem.
引用
收藏
页数:15
相关论文
共 37 条
  • [1] Monotonic functions, Stieltjes integrals and harmonic analyses.
    Bochner, S
    [J]. MATHEMATISCHE ANNALEN, 1933, 108 : 378 - 410
  • [2] MIXED STATES WITH POSITIVE WIGNER FUNCTIONS
    BROCKER, T
    WERNER, RF
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (01) : 62 - 75
  • [3] ON CLASSICAL REPRESENTATIONS OF FINITE-DIMENSIONAL QUANTUM-MECHANICS
    BUSCH, P
    HELLWIG, KE
    STULPE, W
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (03) : 399 - 405
  • [4] Violation of Hudson's theorem in relativistic quantum mechanics
    Campos, Andre G.
    Cabrera, Renan
    Bondar, Denys I.
    Rabitz, Herschel A.
    [J]. PHYSICAL REVIEW A, 2014, 90 (03):
  • [5] Christensen O., 2003, Applied and Numerical Harmonic Analysis
  • [6] Quasi-probability representations of quantum theory with applications to quantum information science
    Ferrie, Christopher
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (11)
  • [7] Necessity of negativity in quantum theory
    Ferrie, Christopher
    Morris, Ryan
    Emerson, Joseph
    [J]. PHYSICAL REVIEW A, 2010, 82 (04):
  • [8] Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations
    Ferrie, Christopher
    Emerson, Joseph
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (35)
  • [9] Framed Hilbert space: hanging the quasi-probability pictures of quantum theory
    Ferrie, Christopher
    Emerson, Joseph
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [10] Folland G.B., 1994, COURSE ABSTRACT HARM