Presentations of the principal subspaces of the higher-level standard <(sl(3))over cap>-modules

被引:20
作者
Sadowski, Christopher [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
STOYANOVSKYS TYPE SUBSPACES; AFFINE LIE-ALGEBRA; COMBINATORIAL BASES; VERTEX OPERATORS; CHARACTERS; A(1)((1))-MODULES; REPRESENTATIONS; IDENTITIES;
D O I
10.1016/j.jpaa.2014.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the theory of vertex operator algebras and intertwining operators, we obtain presentations for the principal subspaces of all the standard <(sl(3))over cap>-modules. Certain of these presentations had been conjectured and used in work of Calinescu to construct exact sequences leading to the graded dimensions of certain principal subspaces. We prove the conjecture in its full generality for all standard <(sl(3))over cap>-modules. We then provide a conjecture for the case of <(sl(n + 1))over cap>. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2300 / 2345
页数:46
相关论文
共 42 条
[11]   Intertwining vertex operators and certain representations of (sl(n))over cap [J].
Calinescu, Corina .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (01) :47-79
[12]   Principal subspaces of higher-level standard sl(3)-modules [J].
Calinescu, Corina .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) :559-575
[13]   The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators [J].
Capparelli, S. ;
Lepowsky, J. ;
Milas, A. .
RAMANUJAN JOURNAL, 2006, 12 (03) :379-397
[14]   The Rogers-Ramanujan recursion and intertwining operators [J].
Capparelli, S ;
Lepowsky, J ;
Milas, A .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (06) :947-966
[15]  
Dong C., 1993, PROG MATH, V112
[16]  
Feigin B, 2009, ADV STU P M, V54, P109
[17]   VERTEX OPERATOR-ALGEBRAS ASSOCIATED TO REPRESENTATIONS OF AFFINE AND VIRASORO ALGEBRAS [J].
FRENKEL, IB ;
ZHU, YC .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (01) :123-168
[18]  
FRENKEL IB, 1993, MEM AM MATH SOC, V104, pR6
[19]  
Frenkel IB., 1988, Vertex Operator Algebras and the Monster
[20]   Combinatorial constructions of modules for infinite-dimensional Lie algebras .1. principal subspace [J].
Georgiev, G .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 112 (03) :247-286