The existence of bound states in a system of three particles in an optical lattice

被引:15
作者
Lakaev, Saidakhmat N. [1 ]
Lakaev, Shukhrat S. [2 ]
机构
[1] Samarkand State Univ, Samarkand, Uzbekistan
[2] Tashkent Inst Irrigat & Meliorat, 39 Kari Niyazov St, Tashkent 100000, Uzbekistan
关键词
Schroedinger operator; three-particle; Hamiltonian; zero-range; fermion; lattice; eigenvalue;
D O I
10.1088/1751-8121/aa7db8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the hamiltonian H mu, mu is an element of R of a system of three-particles ( two identical fermions and one different particle) moving on the lattice Z(d), d = 1, 2 interacting through repulsive (mu > 0) or attractive (mu < 0) zero-range pairwise potential mu nu. We prove for any mu not equal 0 the existence of bound states of the discrete three-particle Schrodinger operator H-mu( K), K is an element of T-d being the three-particle quasi-momentum, associated to the hamiltonian H-mu.
引用
收藏
页数:17
相关论文
共 21 条
[11]   ON EFIMOV EFFECT IN A SYSTEM OF 3 IDENTICAL QUANTUM PARTICLES [J].
LAKAEV, SN .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (03) :166-175
[12]   The spectrum of the Hamiltonian of a system of three quantum particles on a lattice [J].
Lakaev, SN ;
Shermatov, MK .
RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (06) :1250-1251
[13]  
Minlos RA, 2014, MOSC MATH J, V14, P617
[14]   NUMBER OF BOUND-STATES OF 3-BODY SYSTEMS AND EFIMOV EFFECT [J].
OVCHINNIKOV, YN ;
SIGAL, IM .
ANNALS OF PHYSICS, 1979, 123 (02) :274-295
[15]  
Reed M., 1979, 3 SCATTERING THEORY
[16]   THE EFIMOV EFFECT - DISCRETE SPECTRUM ASYMPTOTICS [J].
SOBOLEV, AV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (01) :101-126
[17]  
Tamura H., 1994, Spectral and Scattering Theory and Applications, P311, DOI [10.2969/aspm/02310311, DOI 10.2969/ASPM/02310311]
[18]   Inducing an optical Feshbach resonance via stimulated Raman coupling [J].
Thalhammer, G ;
Theis, M ;
Winkler, K ;
Grimm, R ;
Denschlag, JH .
PHYSICAL REVIEW A, 2005, 71 (03)
[19]   THE SYMMETRY AND EFIMOV EFFECT IN SYSTEMS OF 3-QUANTUM PARTICLES [J].
VUGALTER, SA ;
ZHISLIN, GM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :89-103
[20]   Repulsively bound atom pairs in an optical lattice [J].
Winkler, K. ;
Thalhammer, G. ;
Lang, F. ;
Grimm, R. ;
Denschlag, J. Hecker ;
Daley, A. J. ;
Kantian, A. ;
Buechler, H. P. ;
Zoller, P. .
NATURE, 2006, 441 (7095) :853-856