The existence of bound states in a system of three particles in an optical lattice

被引:15
作者
Lakaev, Saidakhmat N. [1 ]
Lakaev, Shukhrat S. [2 ]
机构
[1] Samarkand State Univ, Samarkand, Uzbekistan
[2] Tashkent Inst Irrigat & Meliorat, 39 Kari Niyazov St, Tashkent 100000, Uzbekistan
关键词
Schroedinger operator; three-particle; Hamiltonian; zero-range; fermion; lattice; eigenvalue;
D O I
10.1088/1751-8121/aa7db8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the hamiltonian H mu, mu is an element of R of a system of three-particles ( two identical fermions and one different particle) moving on the lattice Z(d), d = 1, 2 interacting through repulsive (mu > 0) or attractive (mu < 0) zero-range pairwise potential mu nu. We prove for any mu not equal 0 the existence of bound states of the discrete three-particle Schrodinger operator H-mu( K), K is an element of T-d being the three-particle quasi-momentum, associated to the hamiltonian H-mu.
引用
收藏
页数:17
相关论文
共 21 条
[1]  
Albeverio S, 2012, MARKOV PROCESS RELAT, V18, P387
[2]  
ALBEVERIO S, 2004, ANN I HENRI POINCARE, V5, P1
[3]  
[Anonymous], MATH USSR SB
[4]  
Basti G, 2017, ARXIV17020883226
[5]   Ultracold quantum gases in optical lattices [J].
Bloch, I .
NATURE PHYSICS, 2005, 1 (01) :23-30
[6]   ENERGY-LEVELS OF 3-RESONANTLY INTERACTING PARTICLES [J].
EFIMOV, V .
NUCLEAR PHYSICS A, 1973, A210 (01) :157-188
[7]   High-temperature superfluidity of fermionic atoms in optical lattices [J].
Hofstetter, W ;
Cirac, JI ;
Zoller, P ;
Demler, E ;
Lukin, MD .
PHYSICAL REVIEW LETTERS, 2002, 89 (22)
[8]   The cold atom Hubbard toolbox [J].
Jaksch, D ;
Zoller, P .
ANNALS OF PHYSICS, 2005, 315 (01) :52-79
[9]   Existence and analyticity of bound states of a two-particle Schrodinger operator on a lattice [J].
Lakaev, S. N. ;
Ulashov, S. S. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 170 (03) :326-340
[10]   Existence of an isolated band in a system of three particles in an optical lattice [J].
Lakaev, Saidakhmat N. ;
Dell'Antonio, Gianfausto ;
Khalkhuzhaev, Ahmad M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (14)