Lipschitz shadowing implies structural stability

被引:41
作者
Pilyugin, Sergei Yu [1 ]
Tikhomirov, Sergey [2 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, St Petersburg 198504, Russia
[2] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
关键词
EXPONENTIAL DICHOTOMIES;
D O I
10.1088/0951-7715/23/10/009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Lipschitz shadowing property of a diffeomorphism is equivalent to structural stability. As a corollary, we show that an expansive diffeomorphism having the Lipschitz shadowing property is Anosov.
引用
收藏
页码:2509 / 2515
页数:7
相关论文
共 19 条
[1]  
Abdenur F, 2007, DISCRETE CONT DYN-A, V17, P223
[2]  
[Anonymous], P AM MATH SOC
[3]  
[Anonymous], 1975, LECT NOTES MATH
[4]  
Anosov D.V., 1970, P 5 INT C NONL OSC, V2, P39
[5]  
MANE R, 1975, LECT NOTES MATH, V468
[6]  
MANE R, 1977, LECT NOTES MATH, V597, P389
[7]   Shadowing, expansiveness and hyperbolic homeomorphisms [J].
Ombach, J .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 61 :57-72
[8]   Periodic shadowing and Ω-stability [J].
Osipov, A. V. ;
Pilyugin, S. Yu. ;
Tikhomirov, S. B. .
REGULAR & CHAOTIC DYNAMICS, 2010, 15 (2-3) :404-417
[9]  
Palmer K., 2000, Math. Appl., V501
[10]   EXPONENTIAL DICHOTOMIES AND TRANSVERSAL HOMOCLINIC POINTS [J].
PALMER, KJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 55 (02) :225-256