Cathodic Hydrogen Peroxide Electrosynthesis Using Anthraquinone Modified Carbon Nitride on Gas Diffusion Electrode

被引:40
作者
Zhu, Qianhong [1 ]
Pan, Zhenhua [1 ,2 ]
Hu, Shu [1 ,2 ]
Kim, Jae-Hong [1 ]
机构
[1] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA
[2] Yale Univ, Yale Energy Sci Inst, New Haven, CT 06511 USA
关键词
hydrogen peroxide; electrocatalyst; oxygen reduction reaction; anthraquinone; carbon nitride; RAY PHOTOELECTRON-SPECTROSCOPY; OXYGEN REDUCTION; IN-SITU; INFRARED-SPECTROSCOPY; GRAPHITE FELT; PHOTOCATALYST; SURFACE; ACID; DECOMPOSITION; PERFORMANCE;
D O I
10.1021/acsaem.9b01445
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical synthesis of hydrogen peroxide from oxygen and water can be a cost-effective and energy-efficient alternative to the traditional approach which requires high energy input and expensive noble metal catalysts and has a large CO2 footprint. The availability of selective electrocatalysts and performance validation of a device represent current research needs toward this goal. Herein, we report an efficient electrocatalytic system for hydrogen peroxide production based on anthraquinone molecular catalysts which are tethered onto carbon nitride (C3N4) conductive supports. Anthraquinone enables highly selective synthesis of hydrogen peroxide via two-electron oxygen reduction. The optimal electrolyte pH was identified to both facilitate H2O2 electrochemical synthesis and minimize H2O2 decomposition. The anthraquinone-functionalized C3N4 supports were then adapted a gas diffusion into cathode configuration to greatly enhance the mass transport of oxygen reactants. The device fabricated in this study achieved an optimal H2O2 production rate of 60.1 mmol g(catalyst) h(-1) at a maximum Faradaic efficiency of 42.2%.
引用
收藏
页码:7972 / 7979
页数:15
相关论文
共 61 条
[1]  
[Anonymous], 2019, HYDROGEN PEROXIDE MA
[2]   Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production [J].
Barazesh, James M. ;
Hennebel, Tom ;
Jasper, Justin T. ;
Sedlak, David L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (12) :7391-7399
[3]  
Bard A.J., 2000, Electrochemical methods: fundamentals and applications, V2nd ed.
[4]   In Situ Electrochemical Generation of Hydrogen Peroxide in Alkaline Aqueous Solution by using an Unmodified Gas Diffusion Electrode [J].
Barros, Willyam R. P. ;
Ereno, Thais ;
Tavares, Ana C. ;
Lanza, Marcos R. V. .
CHEMELECTROCHEM, 2015, 2 (05) :714-719
[5]   Infrared spectroscopy of proteins [J].
Barth, Andreas .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2007, 1767 (09) :1073-1101
[6]   Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process [J].
Campos-Martin, Jose M. ;
Blanco-Brieva, Gema ;
Fierro, Jose L. G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (42) :6962-6984
[7]   Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide [J].
Chen, Shucheng ;
Chen, Zhihua ;
Siahrostami, Samira ;
Higgins, Drew ;
Nordlund, Dennis ;
Sokaras, Dimosthenis ;
Kim, Taeho Roy ;
Liu, Yunzhi ;
Yan, Xuzhou ;
Nilsson, Elisabeth ;
Sinclair, Robert ;
Norskov, Jens K. ;
Jaramillo, Thomas F. ;
Bao, Zhenan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (25) :7851-7859
[8]   Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter [J].
Chu, Chiheng ;
Erickson, Paul R. ;
Lundeen, Rachel A. ;
Stamatelatos, Dimitrios ;
Alaimo, Peter J. ;
Latch, Douglas E. ;
McNeill, Kristopher .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (12) :6363-6373
[9]   Carbon catalysts for electrochemical hydrogen peroxide production in acidic media [J].
Colic, Viktor ;
Yang, Sungeun ;
Revay, Zsolt ;
Stephens, Ifan E. L. ;
Chorkendorff, Ib .
ELECTROCHIMICA ACTA, 2018, 272 :192-202
[10]  
Cussler E.L., 1997, DIFFUSION MASS TRANS, DOI DOI 10.1017/CBO9780511805134.010