Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum

被引:286
作者
Gutjahr, Marcus [1 ,2 ]
Ridgwell, Andy [3 ,4 ]
Sexton, Philip F. [5 ]
Anagnostou, Eleni [1 ]
Pearson, Paul N. [6 ]
Paelike, Heiko [7 ]
Norris, Richard D. [8 ]
Thomas, Ellen [9 ,10 ]
Foster, Gavin L. [1 ]
机构
[1] Univ Southampton, Natl Oceanog Ctr Southampton, Ocean & Earth Sci, Southampton SO17 1BJ, Hants, England
[2] GEOMAR Helmholtz Ctr Ocean Res Kiel, Wischhofstr 1-3, D-24148 Kiel, Germany
[3] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England
[4] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA
[5] Open Univ, Sch Environm Earth & Ecosyst Sci, Milton Keynes MK7 6AA, Bucks, England
[6] Cardiff Univ, Sch Earth & Ocean Sci, Cardiff CF10 3AT, S Glam, Wales
[7] Univ Bremen, Ctr Marine Environm Sci, MARUM, D-28359 Bremen, Germany
[8] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92037 USA
[9] Yale Univ, Dept Geol & Geophys, POB 6666, New Haven, CT 06520 USA
[10] Wesleyan Univ, Dept Earth & Environm Sci, Middletown, CT 06459 USA
基金
美国国家科学基金会;
关键词
BORON ISOTOPIC COMPOSITION; ATMOSPHERIC CO2; PH; CONSTRAINTS; SEAWATER; METHANE; FORAMINIFERA; EXCURSION; CLIMATE; EVENTS;
D O I
10.1038/nature23646
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Palaeocene-Eocene Thermal Maximum(1,2) (PETM) was a global warming event that occurred about 56 million years ago, and is commonly thought to have been driven primarily by the destabilization of carbon from surface sedimentary reservoirs such as methane hydrates(3). However, it remains controversial whether such reservoirs were indeed the source of the carbon that drove the warming(1,3-5). Resolving this issue is key to understanding the proximal cause of the warming, and to quantifying the roles of triggers versus feedbacks. Here we present boron isotope data-a proxy for seawater pH-that show that the ocean surface pH was persistently low during the PETM. We combine our pH data with a paired carbon isotope record in an Earth system model in order to reconstruct the unfolding carbon-cycle dynamics during the event(6,7). We find strong evidence for a much larger (more than 10,000 petagrams)-and, on average, isotopically heavier-carbon source than considered previously(8,9). This leads us to identify volcanism associated with the North Atlantic Igneous Province(10,11), rather than carbon from a surface reservoir, as the main driver of the PETM. This finding implies that climate-driven amplification of organic carbon feedbacks probably played only a minor part in driving the event. However, we find that enhanced burial of organic matter seems to have been important in eventually sequestering the released carbon and accelerating the recovery of the Earth system(12).
引用
收藏
页码:573 / +
页数:18
相关论文
共 75 条
[1]   Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate [J].
Anagnostou, Eleni ;
John, Eleanor H. ;
Edgar, Kirsty M. ;
Foster, Gavin L. ;
Ridgwell, Andy ;
Inglis, Gordon N. ;
Pancost, Richard D. ;
Lunt, Daniel J. ;
Pearson, Paul N. .
NATURE, 2016, 533 (7603) :380-+
[2]  
[Anonymous], 2001, THESIS
[3]   A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry [J].
Barker, S ;
Greaves, M ;
Elderfield, H .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2003, 4
[4]   Persistent environmental change after the Paleocene-Eocene Thermal Maximum in the eastern North Atlantic [J].
Bornemann, Andre ;
Norris, Richard D. ;
Lyman, Johnnie A. ;
D'haenens, Simon ;
Groeneveld, Jeroen ;
Roehl, Ursula ;
Farley, Kenneth A. ;
Speijer, Robert P. .
EARTH AND PLANETARY SCIENCE LETTERS, 2014, 394 :70-81
[5]   Rapid carbon sequestration at the termination of the Palaeocene-Eocene Thermal Maximum [J].
Bowen, Gabriel J. ;
Zachos, James C. .
NATURE GEOSCIENCE, 2010, 3 (12) :866-869
[6]   THE EFFECT OF SILICATE WEATHERING ON GLOBAL TEMPERATURE AND ATMOSPHERIC CO2 [J].
BRADY, PV .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1991, 96 (B11) :18101-18106
[7]   The role of ocean transport in the uptake of anthropogenic CO2 [J].
Cao, L. ;
Eby, M. ;
Ridgwell, A. ;
Caldeira, K. ;
Archer, D. ;
Ishida, A. ;
Joos, F. ;
Matsumoto, K. ;
Mikolajewicz, U. ;
Mouchet, A. ;
Orr, J. C. ;
Plattner, G. -K. ;
Schlitzer, R. ;
Tokos, K. ;
Totterdell, I. ;
Tschumi, T. ;
Yamanaka, Y. ;
Yool, A. .
BIOGEOSCIENCES, 2009, 6 (03) :375-390
[8]   Constraints on the numerical age of the Paleocene-Eocene boundary [J].
Charles, Adam J. ;
Condon, Daniel J. ;
Harding, Ian C. ;
Paelike, Heiko ;
Marshall, John E. A. ;
Cui, Ying ;
Kump, Lee ;
Croudace, Ian W. .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2011, 12
[9]   The time scale of the silicate weathering negative feedback on atmospheric CO2 [J].
Colbourn, G. ;
Ridgwell, A. ;
Lenton, T. M. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2015, 29 (05) :583-596
[10]   Global warming and the end-Permian extinction event: Proxy and modeling perspectives [J].
Cui, Ying ;
Kump, Lee R. .
EARTH-SCIENCE REVIEWS, 2015, 149 :5-22