Simulating the fabrication of a silicon-based quantum computer: Molecular dynamics calculations of ion implantation

被引:0
作者
Marks, NA [1 ]
Lee, KH [1 ]
McKenzie, DR [1 ]
机构
[1] Univ Sydney, Sch Phys A28, Sydney, NSW 2006, Australia
来源
EXPERIMENTAL IMPLEMENTATION OF QUANTUM COMPUTATION | 2001年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Molecular dynamics calculations are used to explore the feasibility of ion implantation as a means to construct phosphorus quantum bits in a silicon-based quantum computing device. The simulations employ the recently developed Environment Dependent Interaction Potential which describes bonded interactions more accurately and efficiently than comparable empirical methods. Implantation events with energies of 1 keV are considered, and the evolution of the damage cascade is followed. Transient enhanced diffusion during the post-implantation annealing cycle is small, but significant. Other diffusive processes associated with the silicon self-interstitial are also in close agreement with highly accurate quantum mechanical calculations.
引用
收藏
页码:172 / 175
页数:4
相关论文
共 50 条
[31]   Molecular ion implantation in silicon [J].
Andreas Markwitz ;
Horst Baumann ;
Rolf W. Michelmann ;
Jörg D. Meyer ;
Eberhard F. Krimmel ;
Klaus Bethge .
Microchimica Acta, 1997, 125 :313-316
[32]   Molecular ion implantation in silicon [J].
Markwitz, A ;
Baumann, H ;
Michelmann, RW ;
Meyer, JD ;
Krimmel, EF ;
Bethge, K .
MIKROCHIMICA ACTA, 1997, 125 (1-4) :313-316
[33]   Molecular Ion Implantation in Silicon [J].
Mikrochim Acta, 1-4 (313)
[34]   Silicon quantum integrated circuits -: an attempt to fabricate silicon-based quantum devices using CMOS fabrication techniques [J].
Paul, DJ ;
Coonan, B ;
Redmond, G ;
O'Neill, BJ ;
Crean, GM ;
Holländer, B ;
Mantl, S ;
Zozoulenko, I ;
Berggren, KF ;
Lazzari, JL ;
d'Avitaya, FA ;
Derrien, J .
THIN SOLID FILMS, 1998, 336 (1-2) :130-136
[35]   Silicon quantum integrated circuits -: an attempt to fabricate silicon-based quantum devices using CMOS fabrication techniques [J].
Paul, DJ ;
Coonan, B ;
Redmond, G ;
O'Neill, BJ ;
Crean, GM ;
Holländer, B ;
Mantl, S ;
Zozoulenko, I ;
Berggren, KF ;
Lazzari, JL ;
d'Avitaya, FA ;
Derrien, J .
THIN FILMS EPITAXIAL GROWTH AND NANOSTRUCTURES, 1999, 79 :130-136
[36]   Nanofabrication processes for single-ion implantation of silicon quantum computer devices [J].
McKinnon, RP ;
Stanley, FE ;
Lumpkin, NE ;
Gauja, E ;
Macks, LD ;
Mitic, M ;
Chan, V ;
Peceros, K ;
Buehler, TM ;
Dzurak, AS ;
Clark, RG ;
Yang, C ;
Jamieson, DN ;
Prawer, SD .
SMART MATERIALS & STRUCTURES, 2002, 11 (05) :735-740
[37]   Nanofabrication processes for single-ion implantation of silicon quantum computer devices [J].
McKinnon, RP ;
Stanley, FE ;
Buehler, TM ;
Gauja, E ;
Peceros, K ;
Macks, LD ;
Mitic, M ;
Chan, V ;
Dzurak, AS ;
Clark, RG ;
Yang, CY ;
Jamieson, DN ;
Prawer, S .
BIOMEMS AND SMART NANOSTRUCTURES, 2001, 4590 :310-318
[38]   Silicon-based Devices for Computer Interconnects [J].
Wosinski, Lech ;
Wang, Zhechao .
2010 IEEE 4TH INTERNATIONAL SYMPOSIUM ON ADVANCED NETWORKS AND TELECOMMUNICATION SYSTEMS (ANTS), 2010, :7-9
[39]   Silicon-based molecular nanotechnology [J].
Hersam, MC ;
Guisinger, NP ;
Lyding, JW .
NANOTECHNOLOGY, 2000, 11 (02) :70-76
[40]   DEFECTS FROM IMPLANTATION IN SILICON BY LINKED MARLOWE-MOLECULAR DYNAMICS CALCULATIONS [J].
JARAIZ, M ;
GILMER, GH ;
STOCK, DM ;
DELARUBIA, TD .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1995, 102 (1-4) :180-182