Validation of electron temperature gradient turbulence in the Columbia Linear Machine

被引:7
作者
Fu, X. R. [1 ]
Horton, W. [1 ]
Xiao, Y. [2 ]
Lin, Z. [2 ]
Sen, A. K. [3 ]
Sokolov, V. [3 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
[2] Univ Calif Irvine, Irvine, CA 92697 USA
[3] Columbia Univ, Plasma Res Lab, New York, NY 10027 USA
关键词
TRANSPORT; DRIVEN; MODES;
D O I
10.1063/1.3686148
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The electron temperature gradient (ETG) mode, which is a universal mechanism for turbulent electron thermal transport in plasmas, is produced and verified in steady-state, collisionless hydrogen plasma of the Columbia Linear Machine. Electron temperature profiles with strong gradients are produced by DC acceleration in a remote biased mesh and subsequent thermalization. Finite amplitude similar to 5%, steady-state oscillations at similar to 0.3 similar to 0.5 MHz (in the plasma frame), with azimuthal wave numbers m similar to 14 similar to 16 and parallel wave number k(parallel to) similar to 0.01 cm(-1) are measured. The massively parallel gyrokinetic toroidal code is used to study these modes. The results show that in the linear phase, the dispersion relation is consistent with kinetic theory. In the nonlinear stage, very strong nonlinear wave coupling gives rise to an inverse cascade of the energy from the fastest growing high-m modes to low-m nonlinear oscillations, which are consistent with the measured azimuthal mode spectrum. The radial structure of the fluctuation also agrees with the experiment. An inward radial shift of the peak of the potential fluctuation occurs during the nonlinear saturation and fluctuation fingers extend radially out to the edge plasma. Three-wave coupling mechanism is involved in the saturation of ETG modes. The simulations show a power law spectrum of the turbulence which suggests that the renormalization theory is appropriate to interpret the turbulent thermal flux. (C) 2012 American Institute of Physics. [doi:10.1063/1.3686148]
引用
收藏
页数:7
相关论文
共 16 条
[1]   Electron thermal transport analysis in Tokamak a Configuration Variable [J].
Asp, E. ;
Kim, J-H ;
Horton, W. ;
Porte, L. ;
Alberti, S. ;
Karpushov, A. ;
Martin, Y. ;
Sauter, O. ;
Turri, G. ;
Team, T. C. V. .
PHYSICS OF PLASMAS, 2008, 15 (08)
[2]   Gyrokinetic particle simulations of reversed shear Alfven eigenmode excited by antenna and fast ions [J].
Deng, Wenjun ;
Lin, Zhihong ;
Holod, Ihor ;
Wang, Xin ;
Xiao, Yong ;
Zhang, Wenlu .
PHYSICS OF PLASMAS, 2010, 17 (11)
[3]   Turbulent particle transport in Tore Supra [J].
Hoang, GT ;
Bourdelle, C ;
Garbet, X ;
Pégourié, B ;
Artaud, JF ;
Basiuk, V ;
Bucalossi, J ;
FenziBonizec, C ;
Clairet, F ;
Eriksson, LG ;
Gil, C ;
Guirlet, R ;
Imbeaux, F ;
Lasalle, J ;
Lowry, C ;
Schunke, B ;
Ségui, JL ;
Travère, JM ;
Tsitrone, E ;
Vermare, L .
NUCLEAR FUSION, 2006, 46 (02) :306-316
[4]   Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry [J].
Holod, I. ;
Zhang, W. L. ;
Xiao, Y. ;
Lin, Z. .
PHYSICS OF PLASMAS, 2009, 16 (12)
[5]   TOROIDAL ELECTRON-TEMPERATURE GRADIENT DRIVEN DRIFT MODES [J].
HORTON, W ;
HONG, BG ;
TANG, WM .
PHYSICS OF FLUIDS, 1988, 31 (10) :2971-2983
[6]   Temperature gradient driven electron transport in NSTX and Tore Supra [J].
Horton, W ;
Wong, HV ;
Morrison, PJ ;
Wurm, A ;
Kim, JH ;
Perez, JC ;
Pratt, J ;
Hoang, GT ;
LeBlanc, BP ;
Ball, R .
NUCLEAR FUSION, 2005, 45 (08) :976-985
[7]   TOROIDAL DRIFT MODES DRIVEN BY ION PRESSURE-GRADIENTS [J].
HORTON, W ;
CHOI, DI ;
TANG, WM .
PHYSICS OF FLUIDS, 1981, 24 (06) :1077-1089
[8]   Confinement and local transport in the national spherical torus experiment (NSTX) [J].
Kaye, S. M. ;
Levinton, F. M. ;
Stutman, D. ;
Tritz, K. ;
Yuh, H. ;
Bell, M. G. ;
Bell, R. E. ;
Domier, C. W. ;
Gates, D. ;
Horton, W. ;
Kim, J. ;
LeBlanc, B. P. ;
Luhmann, N. C., Jr. ;
Maingi, R. ;
Mazzucato, E. ;
Menard, J. E. ;
Mikkelsen, D. ;
Mueller, D. ;
Park, H. ;
Rewoldt, G. ;
Sabbagh, S. A. ;
Smith, D. R. ;
Wang, W. .
NUCLEAR FUSION, 2007, 47 (07) :499-509
[9]   COLLISIONLESS ELECTRON-TEMPERATURE GRADIENT INSTABILITY [J].
LEE, YC ;
DONG, JQ ;
GUZDAR, PN ;
LIU, CS .
PHYSICS OF FLUIDS, 1987, 30 (05) :1331-1339
[10]   Role of nonlinear toroidal coupling in electron temperature gradient turbulence [J].
Lin, Z ;
Chen, L ;
Zonca, F .
PHYSICS OF PLASMAS, 2005, 12 (05)