Origins of scaling relations in nonequilibrium growth

被引:29
作者
Escudero, Carlos [1 ,2 ]
Korutcheva, Elka [3 ,4 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Autonoma Madrid, ICMAT CSIC UAM UC3M UCM, E-28049 Madrid, Spain
[3] Univ Nacl Educ Distancia, Dept Fis Fundamental, E-28040 Madrid, Spain
[4] Bulgarian Acad Sci, G Nadjakov Inst Solid State Phys, BU-1784 Sofia, Bulgaria
关键词
RENORMALIZATION-GROUP ANALYSIS; PARISI-ZHANG-EQUATION; KURAMOTO-SIVASHINSKY EQUATION; MOLECULAR-BEAM-EPITAXY; CORRELATED NOISE; DEPOSITION; MODELS; INTERFACES; INVARIANCE; CONTINUUM;
D O I
10.1088/1751-8113/45/12/125005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scaling and hyperscaling laws provide exact relations among critical exponents describing the behavior of a system at criticality. For nonequilibrium growth models with a conserved drift, there exist few of them. One such relation is alpha + z = 4, found to be inexact in a renormalization group calculation for several classical models in this field. Herein, we focus on the two-dimensional case and show that it is possible to construct conserved surface growth equations for which the relation alpha + z = 4 is exact in the renormalization group sense. We explain the presence of this scaling law in terms of the existence of geometric principles dominating the dynamics.
引用
收藏
页数:14
相关论文
共 40 条
[1]  
[Anonymous], 1995, FRACTAL CONCEPT SURF, DOI DOI 10.1017/CBO9780511599798
[2]  
[Anonymous], 2008, NONEQUILIBRIUM PHASE
[3]   Gauge symmetry and Slavnov-Taylor identities for randomly stirred fluids [J].
Berera, Arjun ;
Hochberg, David .
PHYSICAL REVIEW LETTERS, 2007, 99 (25)
[4]   Gauge fixing, BRS invariance and Ward identities for randomly stirred flows [J].
Berera, Arjun ;
Hochberg, David .
NUCLEAR PHYSICS B, 2009, 814 (03) :522-548
[5]   RENORMALIZATION-GROUP ANALYSIS OF A NOISY KURAMOTO-SIVASHINSKY EQUATION [J].
CUERNO, R ;
LAURITSEN, KB .
PHYSICAL REVIEW E, 1995, 52 (05) :4853-4859
[6]   Nonlinear stochastic equations with calculable steady states [J].
da Silveira, RA ;
Kardar, M .
PHYSICAL REVIEW E, 2003, 68 (04)
[7]   Geometric Principles of Surface Growth [J].
Escudero, Carlos .
PHYSICAL REVIEW LETTERS, 2008, 101 (19)
[8]   LARGE-DISTANCE AND LONG-TIME PROPERTIES OF A RANDOMLY STIRRED FLUID [J].
FORSTER, D ;
NELSON, DR ;
STEPHEN, MJ .
PHYSICAL REVIEW A, 1977, 16 (02) :732-749
[9]   Scaling regimes and critical dimensions in the Kardar-Parisi-Zhang problem [J].
Frey, E ;
Täuber, UC ;
Janssen, HK .
EUROPHYSICS LETTERS, 1999, 47 (01) :14-20
[10]   Multiscale theory of fluctuating interfaces: Renormalization of atomistic models [J].
Haselwandter, Christoph A. ;
Vvedensky, Dimitri D. .
PHYSICAL REVIEW LETTERS, 2007, 98 (04)