Optimal Runge-Kutta schemes for pseudo time-stepping with high-order unstructured methods

被引:22
|
作者
Vermeire, B. C. [1 ]
Loppi, N. A. [2 ]
Vincent, P. E. [2 ]
机构
[1] Concordia Univ, Dept Mech Ind & Aerosp Engn, Montreal, PQ, Canada
[2] Imperial Coll London, Dept Aeronaut, London, England
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Runge-Kutta; Artificial compressibility; Optimal; High-order; Flux reconstruction; Pseudo time-stepping; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; FLUX; IMPLICIT; SIMULATIONS; TURBULENCE; NUMBER; GRIDS;
D O I
10.1016/j.jcp.2019.01.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study we generate optimal Runge-Kutta (RK) schemes for converging the Artificial Compressibility Method (ACM) using dual time-stepping with high-order unstructured spatial discretizations. We present optimal RK schemes with between s = 2 and s = 7 stages for Spectral Difference (SD) and Discontinuous Galerkin (DG) discretizations obtained using the Flux Reconstruction (FR) approach with solution polynomial degrees of k = 1 to k = 8. These schemes are optimal in the context of linear advection with predicted speedup factors in excess of 1.80x relative to a classical RK(4,4 )scheme. Speedup factors of between 1.89x and 2.11 x are then observed for incompressible Implicit Large Eddy Simulation (ILES) of turbulent flow over an SD7003 airfoil. Finally, we demonstrate the utility of the schemes for incompressible ILES of a turbulent jet, achieving good agreement with experimental data. The results demonstrate that the optimized RK schemes are suitable for simulating turbulent flows and can achieve significant speedup factors when converging the ACM using dual time-stepping with high-order unstructured spatial discretizations. (C) 2019 The Author(s). Published by Elsevier Inc.
引用
收藏
页码:55 / 71
页数:17
相关论文
共 50 条
  • [1] Optimal embedded pair Runge-Kutta schemes for pseudo-time stepping
    Vermeire, Brian C.
    Loppi, Niki A.
    Vincent, Peter E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 415
  • [2] Approximation of attractors by a variable time-stepping algorithm for Runge-Kutta methods
    Bazavan, Petre
    NINTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, PROCEEDINGS, 2007, : 111 - 117
  • [3] Irksome: Automating Runge-Kutta Time-stepping for Finite Element Methods
    Farrell, Patrick E.
    Kirby, Robert C.
    Marchena-Menendez, Jorge
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2021, 47 (04):
  • [4] ON SYMMETRICAL RUNGE-KUTTA METHODS OF HIGH-ORDER
    CHAN, RPK
    COMPUTING, 1990, 45 (04) : 301 - 309
  • [5] Optimal Runge-Kutta Stability Polynomials for Multidimensional High-Order Methods
    Siavash Hedayati Nasab
    Carlos A. Pereira
    Brian C. Vermeire
    Journal of Scientific Computing, 2021, 89
  • [6] Optimal Runge-Kutta Stability Polynomials for Multidimensional High-Order Methods
    Nasab, Siavash Hedayati
    Pereira, Carlos A.
    Vermeire, Brian C.
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (01)
  • [7] An error control with variable time-stepping Runge-Kutta methods for dynamical systems
    Vigneswaran, R
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 440 - 443
  • [8] Runge-Kutta time-stepping schemes with TVD central differencing for the water hammer equations
    Wahba, E. M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 52 (05) : 571 - 590
  • [9] CONSTRUCTION OF HIGH-ORDER SYMPLECTIC RUNGE-KUTTA METHODS
    SUN, G
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1993, 11 (03): : 250 - 260
  • [10] PARALLEL INTERPOLATION OF HIGH-ORDER RUNGE-KUTTA METHODS
    TIRANI, R
    ROMANO, T
    COMPUTING, 1993, 50 (02) : 175 - 184