Filters and electro-optic modulators on fiber end-faces

被引:1
作者
Meister, Stefan [1 ]
Schweda, Dawid [1 ]
Dziedzina, Marcus [1 ]
Juhre, Ronny [1 ]
Al-Saadi, Aws [1 ]
Franke, Buelent A. [1 ]
Grimm, Bernd [2 ]
Schrader, Sigurd K. [2 ]
Benight, Stephanie J. [3 ]
Bale, Denise H. [3 ]
Kosilkin, Ilya [3 ]
Dalton, Larry R. [3 ]
Eichler, Hans J. [1 ]
机构
[1] Tech Univ Berlin, Inst Opt & Atomare Phys, ER1-1,Str 17 Juni 135, D-10623 Berlin, Germany
[2] Tech Fachhochsch Wildau, Inst Plasma & Lasertech, D-15745 Wildau, Germany
[3] Univ Washington, Dept Chem, Seattle, WA 98195 USA
来源
LASER RESONATORS AND BEAM CONTROL XIII | 2011年 / 7913卷
关键词
Fabry-Perot filter; microcavities; optical fibers; electro-optic modulators; electro-optic polymers; optical coatings;
D O I
10.1117/12.875702
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Passive and tunable optical filters as well as optical modulators, directly fabricated on the end-faces of optical fibers can provide a fast and low cost production. A hybrid layer system can be built up to a passive Fabry-Perot microcavity, where alternating dielectric high and low refractive materials are used as mirrors and a highly transparent polymer as the spacer material. The mirror design and the spacer thickness define the center operation wavelength and the filter bandwidth. Bandwidths of less than 1 nm (FWHM) at a wavelength of 1560 nm could be achieved for such microcavities on the end-faces of optical fibers. Enhancing the hybrid layer system by transparent conductive electrodes and by adding electro-optically active chromophores to the polymeric spacer material, the filters become tunable. The material used for the electrodes is indium tin oxide (ITO). The oxidic electrodes have to be merged with the dielectric mirrors and the polymeric spacer. Applying a voltage to the electro-optically active polymeric spacer utilizing such electrodes, the refractive index of the spacer can be changed and therefore the resonance criteria of the microcavity.
引用
收藏
页数:7
相关论文
共 9 条
[1]  
Dalton LR, 2010, ACS SYM SER, V1039, P13
[2]   Electric Field Poled Organic Electro-optic Materials: State of the Art and Future Prospects [J].
Dalton, Larry R. ;
Sullivan, Philip A. ;
Bale, Denise H. .
CHEMICAL REVIEWS, 2010, 110 (01) :25-55
[3]   Hybrid Fabry-Perot etalon using an electro-optic polymer for optical modulation [J].
Gan, Haiyong ;
Zhang, Hongxi ;
DeRose, Christopher T. ;
Norwood, Robert A. ;
Fallahi, Mahmoud ;
Luo, Jingdong ;
Jen, Alex K. -Y. ;
Liu, Boyang ;
Ho, Seng-Tiong ;
Peyghambarian, Nasser .
APPLIED PHYSICS LETTERS, 2006, 89 (14)
[4]   Review of the present status of optical fiber sensors [J].
Lee, B .
OPTICAL FIBER TECHNOLOGY, 2003, 9 (02) :57-79
[5]  
Macleod H.A., 2001, THIN FILM OPTICAL FI
[6]  
MEISTER S, 2009, FUNCTIONAL OPTICAL C
[7]  
Meister S., 2010, P SOC PHOTO-OPT INS, V7579, P7579
[8]  
Meister S., 2009, P 35 EUR C OPT COMM
[9]   Glass fibers for stimulated Brillouin scattering and phase conjugation [J].
Meister, Stefan ;
Riesbeck, Thomas ;
Eichler, Hans J. .
LASER AND PARTICLE BEAMS, 2007, 25 (01) :15-21