Cubic one-regular graphs of order twice a square-free integer

被引:9
作者
Zhou JinXin [1 ]
Feng YanQuan [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2008年 / 51卷 / 06期
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
one-regular graph; symmetric graph; Cayley graph;
D O I
10.1007/s11425-008-0042-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is one-regular if its automorphism group acts regularly on the set of its arcs. Let n be a square-free integer. In this paper, we show that a cubic one-regular graph of order 2n exists if and only if n = 3(t)p(1)p(2)...p(s) >= 13, where t <= 1, s >= 1 and p(i)'s are distinct primes such that 3 vertical bar(p(i) - 1). For such an integer n, there are 2(s-1) non-isomorphic cubic one-regular graphs of order 2n, which are all Cayley graphs on the dihedral group of order 2n. As a result, no cubic one-regular graphs of order 4 times an odd square-free integer exist.
引用
收藏
页码:1093 / 1100
页数:8
相关论文
共 29 条
  • [1] CONSTRUCTING GRAPHS WHICH ARE 1/2-TRANSITIVE
    ALSPACH, B
    MARUSIC, D
    NOWITZ, L
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 56 : 391 - 402
  • [2] ON WEAKLY SYMMETRICAL GRAPHS OF ORDER TWICE A PRIME
    CHENG, Y
    OXLEY, J
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 42 (02) : 196 - 211
  • [3] Remarks on path-transitivity in finite graphs
    Conder, MDE
    Praeger, CE
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (04) : 371 - 378
  • [4] REGULAR GROUPS OF AUTOMORPHISMS OF CUBIC GRAPHS
    DJOKOVIC, DZ
    MILLER, GL
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 29 (02) : 195 - 230
  • [5] Dobcsanyi P., 2002, J COMBIN MATH COMBIN, V40, P41
  • [6] Du S.-F., 2004, MATH ANAL APPL, V7, P224
  • [7] Arc-transitive cubic Cayley graphs on PSL(2,p)
    Du, SF
    Wang, FR
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (10): : 1297 - 1308
  • [8] Cubic symmetric graphs of order a small number times a prime or a prime square
    Feng, Yan-Quan
    Kwak, Jin Ho
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (04) : 627 - 646
  • [9] Classifying cubic symmetric graphs of order 10p or 10p2
    Feng, YQ
    Kwak, JH
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (03): : 300 - 319
  • [10] Classifying cubic symmetric graphs of order 8p or 8p2
    Feng, YQ
    Kwak, JH
    Wang, KS
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (07) : 1033 - 1052