A new full-vectorial FD-BPM scheme:: Application to the analysis of magnetoptic and nonlinear saturable media

被引:24
作者
Alcantara, LDS [1 ]
Teixeira, FL
César, AC
Borges, BHV
机构
[1] Fed Univ Para, Dept Elect & Comp Engn, BR-66059 Belem, Para, Brazil
[2] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect Engn, BR-13566590 Sao Carlos, SP, Brazil
[3] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43212 USA
[4] Ohio State Univ, Electrosci Lab, Columbus, OH 43212 USA
基金
巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
beam-propagation methods; finite-difference (FD) methods; light condensates; magnetooptic media; saturable media;
D O I
10.1109/JLT.2005.850811
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new three-dimensional (3-D) full-vectorial finite-difference (FD)-based beam-propagation method (BPM) is introduced for the analysis of magnetooptic and nonlinear materials. The refractive-index growth in the nonlinear material is allowed to saturate at high optical power densities (cubic-quintic media). The new formalism is capable of handling any combination of linear, nonlinear, and magnetooptic media, and combines, for the first time, the alternating-direction implicit technique (to improve computational performance) with the leapfrog longitudinal scheme (to simplify the solution of the coupled equations for transverse field components). The result is a numerical method that is both computationally efficient and numerically robust. The proposed BPM formalism is applied to investigate a (nonreciprocal) magnetooptic rib waveguide, as well as the new striking phenomena of light condensates propagation in cubic-quintic (saturable) media, the dynamics of which resemble those of liquid droplets.
引用
收藏
页码:2579 / 2585
页数:7
相关论文
共 21 条
[1]   An improved wide-angle FD-BPM for nonlinear and nonreciprocal waveguides [J].
Alcantara, LDS ;
Teixeira, FL ;
César, AC ;
Borges, BHV .
IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (03) :1223-1226
[2]   Analysis and measurement of polarization conversion in a periodically loaded dielectric waveguide [J].
Ando, T ;
Murata, T ;
Nakayama, H ;
Yamauchi, J ;
Nakano, H .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (09) :1288-1290
[3]   Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides [J].
Fujisawa, T ;
Koshiba, M .
ELECTRONICS AND COMMUNICATIONS IN JAPAN PART II-ELECTRONICS, 2003, 86 (02) :19-27
[4]   Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides [J].
Fujisawa, T ;
Koshiba, M .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002, 20 (10) :1876-1884
[5]   TRANSPARENT BOUNDARY-CONDITION FOR BEAM PROPAGATION [J].
HADLEY, GR .
OPTICS LETTERS, 1991, 16 (09) :624-626
[6]  
Johansen SK, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.026601
[7]   Interaction of spatial photorefractive solitons [J].
Królikowski, W ;
Denz, C ;
Stepken, A ;
Saffman, M ;
Luther-Davies, B .
QUANTUM AND SEMICLASSICAL OPTICS, 1998, 10 (06) :823-837
[8]   Application of a fully vectorial beam propagation method [J].
Li, D ;
VanBrug, H ;
Frankena, HJ .
OPTICAL AND QUANTUM ELECTRONICS, 1997, 29 (02) :313-322
[9]   Formation of a standing-light pulse through collision of gap solitons [J].
Mak, WCK ;
Malomed, BA ;
Chu, PL .
PHYSICAL REVIEW E, 2003, 68 (02) :9
[10]   (3+1)-DIMENSIONAL OPTICAL SOLITON DRAGGING LOGIC [J].
MCLEOD, R ;
WAGNER, K ;
BLAIR, S .
PHYSICAL REVIEW A, 1995, 52 (04) :3254-3278