Exact asymptotic results for the Bernoulli matching model of sequence alignment

被引:43
作者
Majumdar, SN [1 ]
Nechaev, S
机构
[1] Univ Toulouse 3, Phys Theor Lab, CNRS, UMR C5152, F-31062 Toulouse, France
[2] Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
[3] LD Landau Theoret Phys Inst, Moscow 117334, Russia
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 02期
关键词
D O I
10.1103/PhysRevE.72.020901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Finding analytically the statistics of the longest common subsequence (LCS) of a pair of random sequences drawn from c alphabets is a challenging problem in computational evolutionary biology. We present exact asymptotic results for the distribution of the LCS in a simpler, yet nontrivial, variant of the original model called the Bernoulli matching (BM) model. We show that in the BM model, for all c, the distribution of the asymptotic length of the LCS, suitably scaled, is identical to the Tracy-Widom distribution of the largest eigenvalue of a random matrix whose entries are drawn from a Gaussian unitary ensemble.
引用
收藏
页数:4
相关论文
共 35 条
[1]  
ALDOUS D, 1999, B NEW SER AM MATH SO, V12, P1119
[2]   THE RATE OF CONVERGENCE OF THE MEAN LENGTH OF THE LONGEST COMMON SUBSEQUENCE [J].
Alexander, Kenneth S. .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (04) :1074-1082
[3]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[4]  
[Anonymous], INTRO COMPUTATIONAL
[5]  
[Anonymous], 1975, J APPL PROBAB
[6]  
[Anonymous], 2002, PROC INT C MATH
[7]   THE LONGEST COMMON SUBSEQUENCE PROBLEM REVISITED [J].
APOSTOLICO, A ;
GUERRA, C .
ALGORITHMICA, 1987, 2 (03) :315-336
[8]   Limiting distributions for a polynuclear growth model with external sources [J].
Baik, J ;
Rains, EM .
JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (3-4) :523-541
[9]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[10]   An analytic study of the phase transition line in local sequence alignment with gaps [J].
Bundschuh, R ;
Hwa, T .
DISCRETE APPLIED MATHEMATICS, 2000, 104 (1-3) :113-142