Intelligent smoothing using hierarchical Bayesian models

被引:14
|
作者
Graham, Patrick [1 ]
机构
[1] Univ Otago, Dept Publ Hlth & Gen Practice, Christchurch, New Zealand
关键词
D O I
10.1097/EDE.0b013e31816b7859
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Hierarchical Bayesian modeling provides a flexible approach to modeling in multiparameter problems. Examples include disease mapping and spatiotemporal analysis, and multiple exposure modeling. A key feature of hierarchical Bayesian models is that prior expectations regarding model structure are embedded in a probability model that reflects uncertainty about the form of the structure that links analytical units (such as geographic areas). This results in posterior estimates that are compromises between raw data summaries and estimates that conform exactly to the prior model structure. The posterior estimates are more precise and generally have lower mean-squared error than traditional data summaries, and yet are not strictly constrained to follow a posited prior model form.
引用
收藏
页码:493 / 495
页数:3
相关论文
共 50 条
  • [1] Bayesian modeling of school effects using hierarchical models with smoothing priors
    Li, ML
    Tobias, J
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2005, 9 (03):
  • [2] Bayesian hierarchical linear mixed models for additive smoothing splines
    Sun, Dongchu
    Speckman, Paul L.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2008, 60 (03) : 499 - 517
  • [3] Bayesian hierarchical linear mixed models for additive smoothing splines
    Dongchu Sun
    Paul L. Speckman
    Annals of the Institute of Statistical Mathematics, 2008, 60 : 499 - 517
  • [4] HIERARCHICAL BAYESIAN CURVE FITTING AND SMOOTHING
    ANGERS, JF
    DELAMPADY, M
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1992, 20 (01): : 35 - 49
  • [5] Hierarchical Bayesian spatiotemporal analysis of revascularization odds using smoothing splines
    Silva, Giovani L.
    Dean, C. B.
    Niyonsenga, Theophile
    Vanasse, Alain
    STATISTICS IN MEDICINE, 2008, 27 (13) : 2381 - 2401
  • [6] Bayesian Hierarchical Models with Applications Using R
    Stock, Christian
    BIOMETRICAL JOURNAL, 2021, 63 (01) : 213 - 214
  • [7] Bayesian Hierarchical Models
    McGlothlin, Anna E.
    Viele, Kert
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 320 (22): : 2365 - 2366
  • [8] Bayesian hierarchical models
    Schmid, CH
    Brown, EN
    NUMERICAL COMPUTER METHODS, PART C, 2000, 321 : 305 - 330
  • [9] Calibrating Subjective Probabilities Using Hierarchical Bayesian Models
    Merkle, Edgar C.
    ADVANCES IN SOCIAL COMPUTING, PROCEEDINGS, 2010, 6007 : 13 - 22
  • [10] Inversion of hierarchical Bayesian models using Gaussian processes
    Lomakina, Ekaterina I.
    Paliwal, Saee
    Diaconescu, Andreea O.
    Brodersen, Kay H.
    Aponte, Eduardo A.
    Buhmann, Joachim M.
    Stephan, Klaas E.
    NEUROIMAGE, 2015, 118 : 133 - 145