Ground states for fractional Schrodinger equations involving a critical nonlinearity

被引:48
作者
Zhang, Xia [1 ]
Zhang, Binlin [2 ,3 ,4 ]
Xiang, Mingqi [5 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Heilongjiang Inst Technol, Dept Math, Harbin 150050, Peoples R China
[3] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[5] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
基金
中国博士后科学基金; 黑龙江省自然科学基金;
关键词
Fractional Schrodinger equations; fractional Sobolev space; critical Sobolev exponent; ground states; SCALAR FIELD-EQUATIONS; KIRCHHOFF TYPE PROBLEM; POSITIVE SOLUTIONS; LAPLACIAN; EXISTENCE;
D O I
10.1515/anona-2015-0133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is aimed to study ground states for a class of fractional Schrodinger equations involving the critical exponents: (-Delta)(alpha)u + u = lambda f(u) + vertical bar u vertical bar 2(a)*-2(u) in IRN, where lambda is a real parameter, (-Delta)(alpha) is the fractional Laplacian operator with 0 < a < 1, 2(a)* = 2N/N-2 alpha, with 2 <= N, f is a continuous subcritical nonlinearity without the Ambrosetti-Rabinowitz condition. Based on the principle of concentration compactness in the fractional Sobolev space and radially decreasing rearrangements, we obtain a nonnegative radially symmetric minimizer for a constrained minimization problem which has the least energy among all possible solutions for the above equations, i.e., a ground state solution.
引用
收藏
页码:293 / 314
页数:22
相关论文
共 53 条
[1]   Existence of a ground state solution for a nonlinear scalar field equation with critical growth [J].
Alves, Claudianor O. ;
Souto, Marco A. S. ;
Montenegro, Marcelo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (3-4) :537-554
[2]  
[Anonymous], ABSTR APPL AN
[3]  
[Anonymous], ELECT J DIFFER EQU
[4]  
[Anonymous], 1997, Minimax theorems
[5]  
Applebaum D., 2004, NOT AM MATH SOC, V51, P1336
[6]   Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity [J].
Autuori, Giuseppina ;
Fiscella, Alessio ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 :699-714
[7]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[8]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[9]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[10]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313