A Refined Distributed Parallel Algorithm For The Eigenvalue Problem Of Large-scale Matrix

被引:0
|
作者
Zhao, Lu [1 ]
Zhuang, Yi [2 ]
Liu, Yi [3 ]
Ni, Tian Quan [4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Informat Sci & Technol, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing 210016, Peoples R China
[3] Tongji Univ, Coll Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
[4] China Shipbldg Ind Corp, Inst 723, Yangzhou 225001, Jiangsu, Peoples R China
来源
2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7 | 2010年
关键词
eigenvalue problem; substructure method; finite element; distributed parallel algorithm; Subspace iteration algorithm; mode synthesis;
D O I
10.1109/BMEI.2010.5639939
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In view of eigenvalue problems of large-scale matrix, this paper proposes a refined distributed parallel algorithm named RDPC-DTM based on direct transformation method and DPC-DTM algorithm which is a distributed parallel design of direct transformation method. This new method solves the problem that increasing the number of substructure could not effectively enhance the computing efficiency when the scale of matrix is too large. Numerical experiment proves that RDPC-DTM is more efficient than DPC-DTM, especially when calculating eigenvalue of super large-scale matrix. Numerical experiment also demonstrates that RDPC-DTM has higher degree of parallelism and is more suitable for cluster or MPP parallel computer compared to DPC-DTM.
引用
收藏
页码:2780 / 2784
页数:5
相关论文
共 14 条
  • [1] A PARALLEL ALGORITHM FOR THE NONSYMMETRIC EIGENVALUE PROBLEM
    DONGARRA, JJ
    SIDANI, M
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (03): : 542 - 569
  • [2] A refined Arnoldi type method for large scale eigenvalue problems
    Xiang Wang
    Qiang Niu
    Lin-zhang Lu
    Japan Journal of Industrial and Applied Mathematics, 2013, 30 : 129 - 143
  • [3] A refined Arnoldi type method for large scale eigenvalue problems
    Wang, Xiang
    Niu, Qiang
    Lu, Lin-zhang
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2013, 30 (01) : 129 - 143
  • [4] An algebraic substructuring method for large-scale eigenvalue calculation
    Yang, C
    Gao, WG
    Bai, ZJ
    Li, XYS
    Lee, LQ
    Husbands, P
    Ng, E
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (03): : 873 - 892
  • [5] A LANCZOS METHOD FOR LARGE-SCALE EXTREME LORENTZ EIGENVALUE PROBLEMS
    Zhang, Lei-Hong
    Shen, Chungen
    Yang, Wei Hong
    Judice, Joaquim J.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2018, 39 (02) : 611 - 631
  • [6] Parallel solution of large-scale elgenvalue. problem for master equation in protein folding dynamics
    Li, Yiming
    Yu, Shao-Ming
    Li, Yih-Lang
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2008, 68 (05) : 678 - 685
  • [7] An efficient algorithm for the eigenvalue problem of a Hermitian quaternion matrix in quantum chemistry
    Guo, Zhenwei
    Jiang, Tongsong
    Wang, Gang
    Vasil'ev, V. I.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 463
  • [8] A multi-parameter splitting extrapolation and a parallel algorithm for elliptic eigenvalue problem
    Liao, XH
    Zhou, AH
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1998, 16 (03) : 213 - 220
  • [9] A MULTI-PARAMETER SPLITTING EXTRAPOLATION AND A PARALLEL ALGORITHM FOR ELLIPTIC EIGENVALUE PROBLEM
    Xiao-hai Liao Ai-hui Zhou (Institute of Systems Science
    JournalofComputationalMathematics, 1998, (03) : 213 - 220
  • [10] Hybrid finite element transfer matrix method and its parallel solution for fast calculation of large-scale structural eigenproblem
    Rong, Bao
    Lu, Kun
    Ni, Xiaojun
    Ge, Jian
    APPLIED MATHEMATICAL MODELLING, 2020, 77 : 169 - 181