Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

被引:9
作者
Xu, Zejing [1 ]
Li, Yejia [1 ]
Zhang, Boyu [1 ]
Purkait, Tapas [1 ]
Alb, Alina [2 ]
Mitchell, Brian S. [3 ]
Grayson, Scott M. [1 ]
Fink, Mark J. [1 ]
机构
[1] Tulane Univ, Dept Chem, New Orleans, LA 70118 USA
[2] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA
[3] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA
基金
美国国家科学基金会;
关键词
Silicon; Nanoparticles; PEG; Nanohydrogel; Nanocolloids; QUANTUM DOTS; POROUS SILICON; MECHANOCHEMICAL SYNTHESIS; FUNCTIONALIZED SILICON; CLICK CHEMISTRY; DRUG-DELIVERY; SURFACE; SI; NANOCRYSTALS; FLUORESCENT;
D O I
10.1007/s11051-015-2869-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the xchloroalkyl substituents were easily converted to xazidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC "click'' reaction of functional Si NPs with alpha,omega-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol>dichloromethane>toluene) similar in behavior to hydrogel nanocomposites.
引用
收藏
页数:16
相关论文
共 67 条
  • [1] The use of nanocrystals in biological detection
    Alivisatos, P
    [J]. NATURE BIOTECHNOLOGY, 2004, 22 (01) : 47 - 52
  • [2] Bateman JE, 1998, ANGEW CHEM INT EDIT, V37, P2683, DOI 10.1002/(SICI)1521-3773(19981016)37:19<2683::AID-ANIE2683>3.0.CO
  • [3] 2-Y
  • [4] Click Chemistry beyond Metal-Catalyzed Cycloaddition
    Becer, C. Remzi
    Hoogenboom, Richard
    Schubert, Ulrich S.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (27) : 4900 - 4908
  • [5] Observation of a magic discrete family of ultrabright Si nanoparticles
    Belomoin, G
    Therrien, J
    Smith, A
    Rao, S
    Twesten, R
    Chaieb, S
    Nayfeh, MH
    Wagner, L
    Mitas, L
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (05) : 841 - 843
  • [6] Berne Bruce J., 2000, Dynamic light scattering: with applications to chemistry, biology, and physics
  • [7] Bhadra D, 2002, PHARMAZIE, V57, P5
  • [8] Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges
    Bhattacharjee, Sourav
    Rietjens, Ivonne M. C. M.
    Singh, Mani P.
    Atkins, Tonya M.
    Purkait, Tapas K.
    Xu, Zejing
    Regli, Sarah
    Shukaliak, Amber
    Clark, Rhett J.
    Mitchell, Brian S.
    Alink, Gerrit M.
    Marcelis, Antonius T. M.
    Fink, Mark J.
    Veinot, Jonathan G. C.
    Kauzlarich, Susan M.
    Zuilhof, Han
    [J]. NANOSCALE, 2013, 5 (11) : 4870 - 4883
  • [9] Demonstration of directly modulated silicon Raman laser
    Boyraz, O
    Jalali, B
    [J]. OPTICS EXPRESS, 2005, 13 (03): : 796 - 800
  • [10] Semiconductor nanocrystals as fluorescent biological labels
    Bruchez, M
    Moronne, M
    Gin, P
    Weiss, S
    Alivisatos, AP
    [J]. SCIENCE, 1998, 281 (5385) : 2013 - 2016