Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

被引:9
作者
Xu, Zejing [1 ]
Li, Yejia [1 ]
Zhang, Boyu [1 ]
Purkait, Tapas [1 ]
Alb, Alina [2 ]
Mitchell, Brian S. [3 ]
Grayson, Scott M. [1 ]
Fink, Mark J. [1 ]
机构
[1] Tulane Univ, Dept Chem, New Orleans, LA 70118 USA
[2] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA
[3] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA
基金
美国国家科学基金会;
关键词
Silicon; Nanoparticles; PEG; Nanohydrogel; Nanocolloids; QUANTUM DOTS; POROUS SILICON; MECHANOCHEMICAL SYNTHESIS; FUNCTIONALIZED SILICON; CLICK CHEMISTRY; DRUG-DELIVERY; SURFACE; SI; NANOCRYSTALS; FLUORESCENT;
D O I
10.1007/s11051-015-2869-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the xchloroalkyl substituents were easily converted to xazidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC "click'' reaction of functional Si NPs with alpha,omega-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol>dichloromethane>toluene) similar in behavior to hydrogel nanocomposites.
引用
收藏
页数:16
相关论文
共 67 条
[1]   The use of nanocrystals in biological detection [J].
Alivisatos, P .
NATURE BIOTECHNOLOGY, 2004, 22 (01) :47-52
[2]  
Bateman JE, 1998, ANGEW CHEM INT EDIT, V37, P2683, DOI 10.1002/(SICI)1521-3773(19981016)37:19<2683::AID-ANIE2683>3.0.CO
[3]  
2-Y
[4]   Click Chemistry beyond Metal-Catalyzed Cycloaddition [J].
Becer, C. Remzi ;
Hoogenboom, Richard ;
Schubert, Ulrich S. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (27) :4900-4908
[5]   Observation of a magic discrete family of ultrabright Si nanoparticles [J].
Belomoin, G ;
Therrien, J ;
Smith, A ;
Rao, S ;
Twesten, R ;
Chaieb, S ;
Nayfeh, MH ;
Wagner, L ;
Mitas, L .
APPLIED PHYSICS LETTERS, 2002, 80 (05) :841-843
[6]  
Berne Bruce J., 2000, Dynamic light scattering: with applications to chemistry, biology, and physics
[7]  
Bhadra D, 2002, PHARMAZIE, V57, P5
[8]   Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges [J].
Bhattacharjee, Sourav ;
Rietjens, Ivonne M. C. M. ;
Singh, Mani P. ;
Atkins, Tonya M. ;
Purkait, Tapas K. ;
Xu, Zejing ;
Regli, Sarah ;
Shukaliak, Amber ;
Clark, Rhett J. ;
Mitchell, Brian S. ;
Alink, Gerrit M. ;
Marcelis, Antonius T. M. ;
Fink, Mark J. ;
Veinot, Jonathan G. C. ;
Kauzlarich, Susan M. ;
Zuilhof, Han .
NANOSCALE, 2013, 5 (11) :4870-4883
[9]   Demonstration of directly modulated silicon Raman laser [J].
Boyraz, O ;
Jalali, B .
OPTICS EXPRESS, 2005, 13 (03) :796-800
[10]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016