Quandle Cocycle Invariants for Spatial Graphs and Knotted Handlebodies

被引:19
作者
Ishii, Atsushi [1 ]
Iwakiri, Masahide [2 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
[2] Saga Univ, Grad Sch Sci & Engn, Saga 8408502, Japan
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2012年 / 64卷 / 01期
关键词
quandle cocycle invariant; knotted handlebody; spatial graph; ALEXANDER QUANDLES; SURFACE LINKS; COHOMOLOGY;
D O I
10.4153/CJM-2011-035-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a flow of a spatial graph and see how invariants for spatial graphs and handle-body-links are derived from those for flowed spatial graphs. We define a new quandle (co)homology by introducing a subcomplex of the rack chain complex. Then we define quandle colorings and quandle cocycle invariants for spatial graphs and handlebody-links.
引用
收藏
页码:102 / 122
页数:21
相关论文
共 17 条
[1]   Quandle cohomology and state-sum invariants of knotted curves and surfaces [J].
Carter, JS ;
Jelsovsky, D ;
Kamada, S ;
Langford, L ;
Saito, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) :3947-3989
[2]   Geometric interpretations of quandle homology [J].
Carter, JS ;
Kamada, S ;
Saito, M .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2001, 10 (03) :345-386
[3]   Moves and invariants for knotted handlebodies [J].
Ishii, Atsushi .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (03) :1403-1418
[4]   Triple point cancelling numbers of surface links and quandle cocycle invariants [J].
Iwakiri, Masahide .
TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (15) :2815-2822
[5]  
Iwakiri M, 2010, T AM MATH SOC, V362, P1189
[6]   SIMPLE QUANDLES [J].
JOYCE, D .
JOURNAL OF ALGEBRA, 1982, 79 (02) :307-318
[7]   A CLASSIFYING INVARIANT OF KNOTS, THE KNOT QUANDLE [J].
JOYCE, D .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1982, 23 (01) :37-65
[8]   INVARIANTS OF GRAPHS IN 3-SPACE [J].
KAUFFMAN, LH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 311 (02) :697-710
[9]  
Matveev S., 1982, MAT SB, V119, P78
[10]   Some calculations of cohomology groups of finite Alexander quandles [J].
Mochizuki, T .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 179 (03) :287-330