Classification of microarrays to nearest centroids

被引:93
作者
Dabney, AR [1 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/bti681
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Classification of biological samples by microarrays is a topic of much interest. A number of methods have been proposed and successfully applied to this problem. It has recently been shown that classification by nearest centroids provides an accurate predictor that may outperform much more complicated methods. The 'Prediction Analysis of Microarrays' (PAM) approach is one such example, which the authors strongly motivate by its simplicity and interpretability. In this spirit, I seek to assess the performance of classifiers simpler than even PAM. Results: I surprisingly show that the modified t-statistics and shrunken centroids employed by PAM tend to increase misclassification error when compared with their simpler counterparts. Based on these observations, I propose a classification method called 'Classification to Nearest Centroids' (ClaNC). ClaNC ranks genes by standard t-statistics, does not shrink centroids and uses a class-specific gene-selection procedure. Because of these modifications, ClaNC is arguably simpler and easier to interpret than PAM, and it can be viewed as a traditional nearest centroid classifier that uses specially selected genes. I demonstrate that ClaNC error rates tend to be significantly less than those for PAM, for a given number of active genes.
引用
收藏
页码:4148 / 4154
页数:7
相关论文
共 22 条
  • [1] Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    Alizadeh, AA
    Eisen, MB
    Davis, RE
    Ma, C
    Lossos, IS
    Rosenwald, A
    Boldrick, JG
    Sabet, H
    Tran, T
    Yu, X
    Powell, JI
    Yang, LM
    Marti, GE
    Moore, T
    Hudson, J
    Lu, LS
    Lewis, DB
    Tibshirani, R
    Sherlock, G
    Chan, WC
    Greiner, TC
    Weisenburger, DD
    Armitage, JO
    Warnke, R
    Levy, R
    Wilson, W
    Grever, MR
    Byrd, JC
    Botstein, D
    Brown, PO
    Staudt, LM
    [J]. NATURE, 2000, 403 (6769) : 503 - 511
  • [2] Selection bias in gene extraction on the basis of microarray gene-expression data
    Ambroise, C
    McLachlan, GJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) : 6562 - 6566
  • [3] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE
    DONOHO, DL
    JOHNSTONE, IM
    [J]. BIOMETRIKA, 1994, 81 (03) : 425 - 455
  • [6] Comparison of discrimination methods for the classification of tumors using gene expression data
    Dudoit, S
    Fridlyand, J
    Speed, TP
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 77 - 87
  • [7] DUDOIT S, 2000, 576 U CAL BERK
  • [8] Friedman J., 2001, ELEMENTS STAT LEARNI, V1
  • [9] Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    Golub, TR
    Slonim, DK
    Tamayo, P
    Huard, C
    Gaasenbeek, M
    Mesirov, JP
    Coller, H
    Loh, ML
    Downing, JR
    Caligiuri, MA
    Bloomfield, CD
    Lander, ES
    [J]. SCIENCE, 1999, 286 (5439) : 531 - 537
  • [10] Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    Khan, J
    Wei, JS
    Ringnér, M
    Saal, LH
    Ladanyi, M
    Westermann, F
    Berthold, F
    Schwab, M
    Antonescu, CR
    Peterson, C
    Meltzer, PS
    [J]. NATURE MEDICINE, 2001, 7 (06) : 673 - 679