Blind Hyperspectral Unmixing Using Total Variation and lq Sparse Regularization

被引:45
作者
Sigurdsson, Jakob [1 ]
Ulfarsson, Magnus Orn [1 ]
Sveinsson, Johannes R. [1 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 11期
关键词
Blind signal separation; dyadic cyclic descent; hyperspectral unmixing; linear unmixing; sparsity; total variation (TV); ALGORITHM; OPTIMIZATION; MINIMIZATION;
D O I
10.1109/TGRS.2016.2582824
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Blind hyperspectral unmixing involves jointly estimating endmembers and fractional abundances in hyperspectral images. An endmember is the spectral signature of a specific material in an image, while an abundance map specifies the amount of a material seen in each pixel in an image. In this paper, a new cyclic descent algorithm for blind hyperspectral unmixing using total variation (TV) and l(q) sparse regularization is proposed. Abundance maps are both spatially smooth and sparse. Their sparsity derives from the fact that each material in the image is not represented in all pixels. The abundance maps are assumed to be piecewise smooth since adjacent pixels in natural images tend to be composed of similar material. The TV regularizer is used to encourage piecewise smooth images, and the l(q) regularizer promotes sparsity. The dyadic expansion decouples the problem, making a cyclic descent procedure possible, where one abundance map is estimated, followed by the estimation of one endmember. A novel debiasing technique is also employed to reduce the bias of the algorithm. The algorithm is evaluated using both simulated and real hyperspectral images.
引用
收藏
页码:6371 / 6384
页数:14
相关论文
共 44 条
[1]   An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) :681-695
[2]   Fast Image Recovery Using Variable Splitting and Constrained Optimization [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) :2345-2356
[3]   AN ALGORITHM FOR THE MINIMIZATION OF MIXED L1 AND L2 NORMS WITH APPLICATION TO BAYESIAN-ESTIMATION [J].
ALLINEY, S ;
RUZINSKY, SA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (03) :618-627
[4]   Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems [J].
Beck, Amir ;
Teboulle, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (11) :2419-2434
[5]   ICE: A statistical approach to identifying endmembers in hyperspectral images [J].
Berman, M ;
Kiiveri, H ;
Lagerstrom, R ;
Ernst, A ;
Dunne, R ;
Huntington, JF .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (10) :2085-2095
[6]  
Bioucas-Dias J., 2006, P IEEE INT C AC SPEE, V2, P1
[7]   A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2992-3004
[8]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[9]  
Bro R, 1998, J CHEMOMETR, V12, P223, DOI 10.1002/(SICI)1099-128X(199807/08)12:4<223::AID-CEM511>3.3.CO
[10]  
2-U