Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs

被引:180
|
作者
Thomas-Chollier, Morgane [1 ]
Hufton, Andrew [1 ]
Heinig, Matthias [1 ]
O'Keeffe, Sean [1 ]
El Masri, Nassim [1 ]
Roider, Helge G. [1 ]
Manke, Thomas [2 ]
Vingron, Martin [1 ]
机构
[1] Max Planck Inst Mol Genet, Dept Computat Mol Biol, D-14195 Berlin, Germany
[2] Max Planck Inst Immunobiol & Epigenet, Freiburg, Germany
关键词
DNA; IDENTIFICATION; ASSOCIATION; WORKBENCH; RSAT;
D O I
10.1038/nprot.2011.409
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The transcription factor affinity prediction (TRAP) method calculates the affinity of transcription factors for DNA sequences on the basis of a biophysical model. This method has proven to be useful for several applications, including for determining the putative target genes of a given factor. This protocol covers two other applications: (i) determining which transcription factors have the highest affinity in a set of sequences (illustrated with chromatin immunoprecipitation-sequencing (ChIP-seq) peaks), and (ii) finding which factor is the most affected by a regulatory single-nucleotide polymorphism. The protocol describes how to use the TRAP web tools to address these questions, and it also presents a way to run TRAP on random control sequences to better estimate the significance of the results. All of the tools are fully available online and do not need any additional installation. The complete protocol takes about 45 min, but each individual tool runs in a few minutes.
引用
收藏
页码:1860 / 1869
页数:10
相关论文
共 50 条
  • [1] Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs
    Morgane Thomas-Chollier
    Andrew Hufton
    Matthias Heinig
    Sean O'Keeffe
    Nassim El Masri
    Helge G Roider
    Thomas Manke
    Martin Vingron
    Nature Protocols, 2011, 6 : 1860 - 1869
  • [2] On the detection and refinement of transcription factor binding sites using ChIP-Seq data
    Hu, Ming
    Yu, Jindan
    Taylor, Jeremy M. G.
    Chinnaiyan, Arul M.
    Qin, Zhaohui S.
    NUCLEIC ACIDS RESEARCH, 2010, 38 (07) : 2154 - 2167
  • [3] Transcription Factor Binding Site Mapping Using ChIP-Seq
    Jaini, Suma
    Lyubetskaya, Anna
    Gomes, Antonio
    Peterson, Matthew
    Park, Sang Tae
    Raman, Sahadevan
    Schoolnik, Gary
    Galagan, James
    MICROBIOLOGY SPECTRUM, 2014, 2 (02):
  • [4] Detection of Regulatory SNPs in Human Genome Using ChIP-seq ENCODE Data
    Bryzgalov, Leonid O.
    Antontseva, Elena V.
    Matveeva, Marina Yu.
    Shilov, Alexander G.
    Kashina, Elena V.
    Mordvinov, Viatcheslav A.
    Merkulova, Tatyana I.
    PLOS ONE, 2013, 8 (10):
  • [5] CISMAPPER: predicting regulatory interactions from transcription factor ChIP-seq data
    O'Connor, Timothy
    Boden, Mikael
    Bailey, Timothy L.
    NUCLEIC ACIDS RESEARCH, 2017, 45 (04) : e19
  • [6] Identifying differential transcription factor binding in ChIP-seq
    Wu, Dai-Ying
    Bittencourt, Danielle
    Stallcup, Michael R.
    Siegmund, Kimberly D.
    FRONTIERS IN GENETICS, 2015, 6
  • [7] Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data
    Valouev, Anton
    Johnson, David S.
    Sundquist, Andreas
    Medina, Catherine
    Anton, Elizabeth
    Batzoglou, Serafim
    Myers, Richard M.
    Sidow, Arend
    NATURE METHODS, 2008, 5 (09) : 829 - 834
  • [8] Pinpointing transcription factor binding sites from ChIP-seq data with SeqSite
    Wang, Xi
    Zhang, Xuegong
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [9] Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data
    Valouev A.
    Johnson D.S.
    Sundquist A.
    Medina C.
    Anton E.
    Batzoglou S.
    Myers R.M.
    Sidow A.
    Nature Methods, 2008, 5 (9) : 829 - 834
  • [10] Identifying causal regulatory SNPs in ChIP-seq enhancers
    Huang, Di
    Ovcharenko, Ivan
    NUCLEIC ACIDS RESEARCH, 2015, 43 (01) : 225 - 236