Two points, one limit: Homogenization techniques for two-point local algebras

被引:1
作者
Roch, Steffen [2 ]
Santos, Pedro A. [1 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
[2] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
Convolution operators; Banach algebras; Local principles; Homogenization techniques;
D O I
10.1016/j.jmaa.2012.02.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study several algebras generated by convolution, multiplication and flip operators on L-p(R), their Calkin counterparts and derive new isomorphism relations. We introduce a new class of homogenization strong limits, compatible with the flip operator and which explore the properties of the Fourier transform in L-p(R), when p not equal 2. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:552 / 566
页数:15
相关论文
共 12 条
[1]  
ALLAN GR, 1968, P LOND MATH SOC, V18, P193
[2]  
[Anonymous], 1966, Integral'nye operatory v prostranstvakh summiruemykh funktsii (Integral Operatorsin Spaces of Summable Functions)
[3]  
Bottcher A., 2006, SPRINGER MONOGRAPHS
[4]  
Bottcher A., 1999, INTRO LARGE TRUNCATE
[5]  
Didenko VD, 2008, FRONT MATH, P1
[6]  
Duduchava R., 1979, NTEGRAL EQUATIONS FI
[7]  
Hagen R., 2001, Monographs and Textbooks in Pure and Applied Mathematics
[8]  
Hagen Roland., 1995, SPECTRAL THEORY APPR
[9]  
Prossdorf S., 1991, NUMERICAL ANAL INTE
[10]  
Roch S, 2011, UNIVERSITEXT, P369, DOI 10.1007/978-0-85729-183-7