Noisy Preprocessing Facilitates a Photonic Realization of Device-Independent Quantum Key Distribution

被引:37
作者
Ho, M. [1 ,2 ]
Sekatski, P. [1 ]
Tan, E. Y-Z [3 ]
Renner, R. [3 ]
Bancal, J-D [1 ,2 ]
Sangouard, N. [1 ,4 ]
机构
[1] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[2] Univ Geneva, Dept Appl Phys, Chemin Pinchat 22, CH-1211 Geneva, Switzerland
[3] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[4] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France
基金
瑞士国家科学基金会;
关键词
SECURITY;
D O I
10.1103/PhysRevLett.124.230502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Device-independent quantum key distribution provides security even when the equipment used to communicate over the quantum channel is largely uncharacterized. An experimental demonstration of device-independent quantum key distribution is however challenging. A central obstacle in photonic implementations is that the global detection efficiency, i.e., the probability that the signals sent over the quantum channel are successfully received, must be above a certain threshold. We here propose a method to significantly relax this threshold, while maintaining provable device-independent security. This is achieved with a protocol that adds artificial noise, which cannot be known or controlled by an adversary, to the initial measurement data (the raw key). Focusing on a realistic photonic setup using a source based on spontaneous parametric down conversion, we give explicit bounds on the minimal required global detection efficiency.
引用
收藏
页数:6
相关论文
共 42 条
[1]   Practical device-independent quantum cryptography via entropy accumulation [J].
Arnon-Friedman, Rotem ;
Dupuis, Frederic ;
Fawzi, Omar ;
Renner, Renato ;
Vidick, Thomas .
NATURE COMMUNICATIONS, 2018, 9
[2]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[3]   Side-Channel-Free Quantum Key Distribution [J].
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[4]   Bell nonlocality [J].
Brunner, Nicolas ;
Cavalcanti, Daniel ;
Pironio, Stefano ;
Scarani, Valerio ;
Wehner, Stephanie .
REVIEWS OF MODERN PHYSICS, 2014, 86 (02) :419-478
[5]   Detection-Loophole-Free Test of Quantum Nonlocality, and Applications [J].
Christensen, B. G. ;
McCusker, K. T. ;
Altepeter, J. B. ;
Calkins, B. ;
Gerrits, T. ;
Lita, A. E. ;
Miller, A. ;
Shalm, L. K. ;
Zhang, Y. ;
Nam, S. W. ;
Brunner, N. ;
Lim, C. C. W. ;
Gisin, N. ;
Kwiat, P. G. .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)
[6]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[7]  
Comandar LC, 2016, NAT PHOTONICS, V10, P312, DOI [10.1038/nphoton.2016.50, 10.1038/NPHOTON.2016.50]
[8]   Distillation of secret key and entanglement from quantum states [J].
Devetak, I ;
Winter, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053) :207-235
[9]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[10]   Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits [J].
Ferreira da Silva, T. ;
Vitoreti, D. ;
Xavier, G. B. ;
do Amaral, G. C. ;
Temporao, G. P. ;
von der Weid, J. P. .
PHYSICAL REVIEW A, 2013, 88 (05)