In-situ growth of NiAl layered double hydroxides on Ni-based metal-organic framework derived hierarchical carbon as high performance material for Zn-ion batteries

被引:39
作者
Chai, Lulu [1 ]
Musa, Abba Bala [1 ]
Pan, Junqing [1 ]
Song, Jinlu [1 ]
Sun, Yanzhi [1 ]
Liu, Xiaoguang [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Chem, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal -organic framework; Hierarchical carbon; Layered double hydroxides; Aqueous Zn ion Battery; HIGH-ENERGY; CATHODE; NANOSHEETS; MICROSPHERES; BONDS; MXENE; LDHS;
D O I
10.1016/j.jpowsour.2022.231887
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of advanced active materials with high capacity, low-cost, and safety has become a require-ment to meet future energy storage systems for electric vehicles. Herein, we report a rational in-situ synthesis of NiAl layered double hydroxides (LDHs) on Ni-based metal-organic framework (MOF)-derived porous carbons (PCs) material (NiAl-LDH/Ni@C) with cross-linking nanosheet structure and high electrical conductivity by a hydrothermal method. This unique structure design improves electrical conductivity, reduces internal resistance, and enables more electrochemically active sites to participate in chemical reactions through the strong inter-action and synergy between the hierarchical structure of two-dimensional nanosheets and PCs. The results exhibit that NiAl-LDH/Ni@C composite possesses a large specific capacity (391.7 mAh g(-1)), high rate capability, and outstanding capacity retention stability (97.6%@10 A g(-1) after 10,000 cycles). Furthermore, the as -assembled Zn-ion battery based on a NiAl-LDH/Ni@C cathode displays a remarkable capacity (345 mAh g(-1)@1 A g(-1)), excellent energy/power density (604.6 Wh kg(-1)/1.77 kW kg(-1)), and superb cycle durability (95.3%@2 A g(-1)). The proposed approach provides an unprecedented direction for designing advanced energy storage devices with high electrochemical performance.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Graphitic carbon nitride modified graphene/Nie-Al layered double hydroxide and 3D functionalized graphene for solid-state asymmetric supercapacitors [J].
Bandyopadhyay, Parthasarathi ;
Li, Xuyang ;
Kim, Nam Hoon ;
Lee, Joong Hee .
CHEMICAL ENGINEERING JOURNAL, 2018, 353 :824-838
[2]   Accurately control the micropore/mesopore ratio to construct a new hierarchical porous carbon with ultrahigh capacitance and rate performance [J].
Chai, Lulu ;
Wang, Pingyuan ;
Liu, Xingyu ;
Sun, Yanzhi ;
Li, Xifei ;
Pan, Junqing .
JOURNAL OF POWER SOURCES, 2022, 532
[3]   Rational Design and Growth of MOF-on-MOF Heterostructures [J].
Chai, Lulu ;
Pan, Junqing ;
Hu, Yue ;
Qian, Jinjie ;
Hong, Maochun .
SMALL, 2021, 17 (36)
[4]   Stringing Bimetallic Metal-Organic Framework-Derived Cobalt Phosphide Composite for High-Efficiency Overall Water Splitting [J].
Chai, Lulu ;
Hu, Zhuoyi ;
Wang, Xian ;
Xu, Yuwei ;
Zhang, Linjie ;
Li, Ting-Ting ;
Hu, Yue ;
Qian, Jinjie ;
Huang, Shaoming .
ADVANCED SCIENCE, 2020, 7 (05)
[5]   Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance [J].
Chai, Lulu ;
Zhang, Linjie ;
Wang, Xian ;
Xu, Leqiong ;
Han, Cheng ;
Li, Ting-Ting ;
Hu, Yue ;
Qian, Jinjie ;
Huang, Shaoming .
CARBON, 2019, 146 :248-256
[6]   Fabrication of a Au-loaded CaFe2O4/CoAl LDH p-n junction based architecture with stoichiometric H2 & O2 generation and Cr(vi) reduction under visible light [J].
Das, Snehaprava ;
Patnaik, Sulagna ;
Parida, K. M. .
INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (01) :94-109
[7]   Accelerating the energy transition to achieve carbon neutrality [J].
De la Pena, Lizette ;
Guo, Ru ;
Cao, Xiaojing ;
Ni, Xiaojing ;
Zhang, Wei .
RESOURCES CONSERVATION AND RECYCLING, 2022, 177
[8]   Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries [J].
Du, Wencheng ;
Ang, Edison Huixiang ;
Yang, Yang ;
Zhang, Yufei ;
Ye, Minghui ;
Li, Cheng Chao .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3330-3360
[9]   MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption [J].
Gao, Sai ;
Zhang, Guozheng ;
Wang, Yi ;
Han, Xiaopeng ;
Huang, Ying ;
Liu, Panbo .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 88 :56-65
[10]   Strategy of Graphdiyne (g-CnH2n-2 ) Preparation Coupling with the Flower-Like NiAl-LDH Heterjunctions for Efficient Photocatalytic Hydrogen Evolution** [J].
Jin, Zhi-liang ;
Wang, Yuan-peng .
CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (49) :12649-12658