Interactive visual labelling versus active learning: an experimental comparison

被引:13
作者
Chegini, Mohammad [1 ,2 ]
Bernard, Jurgen [3 ]
Cui, Jian [2 ]
Chegini, Fatemeh [4 ]
Sourin, Alexei [2 ]
Andrews, Keith [5 ]
Schreck, Tobias [1 ]
机构
[1] Graz Univ Technol, Inst Comp Graph & Knowledge Visualisat, A-8010 Graz, Austria
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[3] Univ British Columbia, InfoVis Grp, Vancouver, BC V6T 1Z4, Canada
[4] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
[5] Graz Univ Technol, Inst Interact Syst & Data Sci, A-8010 Graz, Austria
关键词
Interactive visual labelling; Active learning; Visual analytics; TP311;
D O I
10.1631/FITEE.1900549
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Methods from supervised machine learning allow the classification of new data automatically and are tremendously helpful for data analysis. The quality of supervised maching learning depends not only on the type of algorithm used, but also on the quality of the labelled dataset used to train the classifier. Labelling instances in a training dataset is often done manually relying on selections and annotations by expert analysts, and is often a tedious and time-consuming process. Active learning algorithms can automatically determine a subset of data instances for which labels would provide useful input to the learning process. Interactive visual labelling techniques are a promising alternative, providing effective visual overviews from which an analyst can simultaneously explore data records and select items to a label. By putting the analyst in the loop, higher accuracy can be achieved in the resulting classifier. While initial results of interactive visual labelling techniques are promising in the sense that user labelling can improve supervised learning, many aspects of these techniques are still largely unexplored. This paper presents a study conducted using the mVis tool to compare three interactive visualisations, similarity map, scatterplot matrix (SPLOM), and parallel coordinates, with each other and with active learning for the purpose of labelling a multivariate dataset. The results show that all three interactive visual labelling techniques surpass active learning algorithms in terms of classifier accuracy, and that users subjectively prefer the similarity map over SPLOM and parallel coordinates for labelling. Users also employ different labelling strategies depending on the visualisation used.
引用
收藏
页码:524 / 535
页数:12
相关论文
共 27 条
  • [1] [Anonymous], 2005, P 20 NATL C ARTIFICI
  • [2] [Anonymous], 2011, SIGKDD Explor. Newsl., DOI DOI 10.1145/1964897.1964906
  • [3] VIAL: a unified process for visual interactive labeling
    Bernard, Juergen
    Zeppelzauer, Matthias
    Sedlmair, Michael
    Aigner, Wolfgang
    [J]. VISUAL COMPUTER, 2018, 34 (09) : 1189 - 1207
  • [4] Towards User-Centered Active Learning Algorithms
    Bernard, Juergen
    Zeppelzauer, Matthias
    Lehmann, Markus
    Mueller, Martin
    Sedlmair, Michael
    [J]. COMPUTER GRAPHICS FORUM, 2018, 37 (03) : 121 - 132
  • [5] Comparing Visual-Interactive Labeling with Active Learning: An Experimental Study
    Bernard, Juergen
    Hutter, Marco
    Zeppelzauer, Matthias
    Fellner, Dieter
    Sedlmair, Michael
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (01) : 298 - 308
  • [6] Bishop CM, 2006, PATTERN RECOGN, DOI [DOI 10.1117/1.2819119, 10.1117/1.2819119]
  • [7] Characterizing Guidance in Visual Analytics
    Ceneda, Davide
    Gschwandtner, Theresia
    May, Thorsten
    Miksch, Silvia
    Schulz, Hans-Jorg
    Streit, Marc
    Tominski, Christian
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) : 111 - 120
  • [8] Interactive labelling of a multivariate dataset for supervised machine learning using linked visualisations, clustering, and active learning
    Chegini, Mohammad
    Bernard, Juergen
    Berger, Philip
    Sourin, Alexei
    Andrews, Keith
    Schreck, Tobias
    [J]. VISUAL INFORMATICS, 2019, 3 (01) : 9 - 17
  • [9] Interactive Visual Exploration of Local Patterns in Large Scatterplot Spaces
    Chegini, Mohammad
    Shao, Lin
    Gregor, Robert
    Lehmann, Dirk J.
    Andrews, Keith
    Schreck, Tobias
    [J]. COMPUTER GRAPHICS FORUM, 2018, 37 (03) : 99 - 109
  • [10] Hall M., 2009, SIGKDD EXPLORATIONS, V11, P10, DOI DOI 10.1145/1656274.1656278