Harnack's inequality for quasiminimizers with nonstandard growth conditions

被引:32
作者
Harjulehto, Petteri [2 ]
Kuusi, Tuomo [1 ]
Lukkari, Teemu [1 ]
Marola, Niko [1 ]
Parviainen, Mikko [1 ]
机构
[1] Helsinki Univ Technol, Inst Math, FI-02015 Helsinki, Finland
[2] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
quasiminimizer; Dirichlet energy integral; variable exponent; Laplace equation;
D O I
10.1016/j.jmaa.2008.03.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Harnack inequalities for quasiminimizers of the variable exponent Dirichlet energy integral by employing the De Giorgi method. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:504 / 520
页数:17
相关论文
共 19 条
[1]   A TRANSMISSION PROBLEM IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :1-16
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]  
Alkhutov Y.A., 1997, DIFF URAVN, V33, P1651
[4]  
ALKHUTOV YA, 1997, DIFF URAVN, V33, P1726
[5]  
[Anonymous], 1995, RUSSIAN J MATH PHYS
[6]   Moser iteration for (quasi)minimizers on metric spaces [J].
Bjorn, Anders ;
Marola, Niko .
MANUSCRIPTA MATHEMATICA, 2006, 121 (03) :339-366
[7]  
DIBENEDETTO E, 1984, ANN I H POINCARE-AN, V1, P295
[8]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[9]   Regularity of quasi-minimizers of integral functionals with discontinuous p(x)-growth conditions [J].
Fan, Xianling ;
Zhao, Dun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (08) :1521-1531
[10]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446