A BGG-type resolution for tensor modules over general linear superalgebra

被引:14
作者
Cheng, Shun-Jen [1 ]
Kwon, Jae-Hoon [2 ]
Lam, Ngau [3 ]
机构
[1] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[2] Univ Seoul, Dept Math, Seoul 130743, South Korea
[3] Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
关键词
Bernstein-Gelfand-Gelfand resolution; singular vector; Kac module; general linear superalgebra;
D O I
10.1007/s11005-008-0231-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a Bernstein-Gelfand-Gelfand type resolution in terms of direct sums of Kac modules for the finite-dimensional irreducible tensor representations of the general linear superalgebra. As a consequence it follows that the unique maximal submodule of a corresponding reducible Kac module is generated by its proper singular vector.
引用
收藏
页码:75 / 87
页数:13
相关论文
共 15 条
[1]   HOOK YOUNG-DIAGRAMS WITH APPLICATIONS TO COMBINATORICS AND TO REPRESENTATIONS OF LIE-SUPERALGEBRAS [J].
BERELE, A ;
REGEV, A .
ADVANCES IN MATHEMATICS, 1987, 64 (02) :118-175
[2]  
BERNSTEIN IN, 1975, P SUMM SCH BOL JAN M, P21
[3]   Kazhdan-Luszti polynomials and character formulae for the Lie superalebra gl(m|n) [J].
Brundan, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) :185-231
[4]  
Cheng SJ, 2004, INT MATH RES NOTICES, V2004, P31
[5]  
CHENG SJ, IN PRESS T AM MATH S
[6]   LIE-ALGEBRA HOMOLOGY AND MACDONALD-KAC FORMULAS [J].
GARLAND, H ;
LEPOWSKY, J .
INVENTIONES MATHEMATICAE, 1976, 34 (01) :37-76
[7]   REMARKS ON CLASSICAL INVARIANT-THEORY [J].
HOWE, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 313 (02) :539-570
[8]  
JURISICH E, 1996, CONT MATH, V194
[9]   Graded Lie superalgebras, supertrace formula, and orbit Lie superalgebras [J].
Kang, SJ ;
Kwon, JH .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 :675-724
[10]  
Kumar S, 2002, PROGR MATH, V204