Modeling and prediction of the effective thermal conductivity of random open-cell porous foams

被引:226
|
作者
Wang, Moran [1 ]
Pan, Ning [1 ]
机构
[1] Univ Calif Davis, NEAT, Davis, CA 95616 USA
关键词
effective thermal conductivity; open-cell foams; random structure; random generation-growth; lattice Boltzmann method;
D O I
10.1016/j.ijheatmasstransfer.2007.11.031
中图分类号
O414.1 [热力学];
学科分类号
摘要
Although highly desirable, accurate prediction of the effective thermal conductivity of high-porosity open-cell porous foam materials has remained to be a challenging problem. Aiming at this thorny obstacle, we have developed a random generation-growth method to reproduce the microstructures of open-cell foam materials via computer modeling, and then solve the energy transport equations through the complex structure by using a high-efficiency lattice Boltzmann method in this contribution. The effective thermal conductivities of open-cell foam materials are thus numerically calculated and the predictions are compared with the existing experimental data. Since the porosity is high, the predicted thermal conductivity caused by thermal conduction is lower than the measured data when the thermal conductivity of either component is very low and the radiation heat transfer is non-negligible. After considering the radiation effect, the numerical predictions agree rather well with the experimental data. The radiation influence is diminishing as the material porosity decreases. In general the effective thermal conductivity of open-cell foam materials is much higher than that of granular materials of the same components due to the enhanced heat transfer by the inner netlike morphology of the foam materials. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1325 / 1331
页数:7
相关论文
共 50 条
  • [31] Constitutive modeling for characterizing the compressive behavior of PMMA open-cell foams
    Jo, Choonghee
    Fu, Jin
    Naguib, Hani E.
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2007, 45 (04) : 436 - 443
  • [32] Modeling the dynamic response of visco-elastic open-cell foams
    Romero, Pedro A.
    Zheng, Shanfu F.
    Cuitino, Alberto M.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (05) : 1916 - 1943
  • [33] A modified Lattice Boltzmann method for predicting the effective thermal conductivity of open-cell foam materials
    Zhu, Wenbing
    Kan, Ankang
    Chen, Zhaofeng
    Zhang, Qiaoling
    Zhang, Jiaxiang
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 133
  • [34] Modeling of effective thermal conductivity for porous media
    Takatsu Y.
    Masuoka T.
    Nomura T.
    Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2010, 76 (768): : 1240 - 1247
  • [35] Prediction of effective thermal conductivity of coated metals foams using cubic unit cell
    Almajali, Mohammad
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2021, 25
  • [36] Computational aspects of effective thermal conductivity of highly porous metal foams
    Singh, R
    Kasana, HS
    APPLIED THERMAL ENGINEERING, 2004, 24 (13) : 1841 - 1849
  • [37] A simple and efficient method for the evaluation of effective thermal conductivity of open-cell foam-like structures
    Mendes, Miguel A. A.
    Ray, Subhashis
    Trimis, Dimosthenis
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 66 : 412 - 422
  • [38] A method for characterisation of the static elastic properties of the porous frame of orthotropic open-cell foams
    Van der Kelen, Christophe
    Cuenca, Jacques
    Goransson, Peter
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2015, 86 : 44 - 59
  • [39] Influence of Pore Size Variation on Thermal Conductivity of Open-Porous Foams
    Skibinski, Jakub
    Cwieka, Karol
    Ibrahim, Samih Haj
    Wejrzanowski, Tomasz
    MATERIALS, 2019, 12 (12):
  • [40] Experimental and numerical determination of effective thermal conductivity of open cell FeCrAl-alloy metal foams
    Wulf, Rhena
    Mendes, Miguel A. A.
    Skibina, Valeria
    Al-Zoubi, Ahmad
    Trimis, Dimosthenis
    Ray, Subhashis
    Gross, Ulrich
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 86 : 95 - 103