Conditional symmetries and exact solutions of the diffusive Lotka-Volterra system

被引:25
作者
Cherniha, Roman [1 ,2 ]
Davydovych, Vasyl' [1 ]
机构
[1] Ukrainian Natl Acad Sci, Inst Math, UA-01601 Kiev, Ukraine
[2] Natl Univ Kyiv Mohyla Acad, Dept Math, UA-04070 Kiev, Ukraine
关键词
Diffusive Lotka-Volterra system; Reaction-diffusion system; Lie symmetry; Q-conditional symmetry; Non-classical symmetry; Exact solution; NONCLASSICAL SYMMETRIES; CONVECTION EQUATIONS; EVOLUTION-EQUATIONS; LIE SYMMETRIES; ANSATZE;
D O I
10.1016/j.mcm.2011.03.035
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Q-conditional symmetries of the classical diffusive Lotka-Volterra system in the case of one space variable are completely described and a set of such symmetries in explicit form is constructed. The relevant non-Lie ansatz to reduce the diffusive Lotka-Volterra systems with correctly specified coefficients to ODE systems and examples of new exact solutions are found. A possible biological interpretation of some exact solutions is presented. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1238 / 1251
页数:14
相关论文
共 33 条
[1]  
[Anonymous], 2013, Mathematical Biology
[2]  
[Anonymous], 2020, Introduction to Partial Differential Equations
[3]  
[Anonymous], PHYS D
[4]  
[Anonymous], NONLINEAR EVOLUTION
[5]  
[Anonymous], 1972, NONLINEAR PARTIAL DI
[6]   Nonclassical symmetries of a class of Burgers' systems [J].
Arrigo, Daniel J. ;
Ekrut, David A. ;
Fliss, Jackson R. ;
Le, Long .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (02) :813-820
[7]  
ARRIGO DJ, 1995, STUD APPL MATH, V94, P21
[8]   NONCLASSICAL SYMMETRY REDUCTIONS OF THE LINEAR DIFFUSION EQUATION WITH A NONLINEAR SOURCE [J].
ARRIGO, DJ ;
HILL, JM ;
BROADBRIDGE, P .
IMA JOURNAL OF APPLIED MATHEMATICS, 1994, 52 (01) :1-24
[9]  
BETEMAN H, 1955, HIGHER TRANSCENDENTA, V3
[10]  
Bluman G., 2010, Applied Mathematical Sciences