Space charge capacitance study of GaP/Si multilayer structures grown by plasma deposition

被引:2
作者
Gudovskikh, A. S. [1 ,2 ]
Baranov, A., I [1 ]
Uvarov, A., V [1 ]
Kudryashov, D. A. [1 ]
Kleider, J-P [3 ,4 ]
机构
[1] Alferov Univ, St Petersburg 194091, Russia
[2] St Petersburg Electrochem Univ LETI, St Petersburg 197376, Russia
[3] Univ Paris Saclay, CNRS, CentraleSupelec, Lab Genie Elect & Elect Paris, F-91192 Gif Sur Yvette, France
[4] Sorbonne Univ, Lab Genie Elect & Elect Paris, CNRS, F-75252 Paris, France
基金
俄罗斯科学基金会;
关键词
admittance spectroscopy; DLTS; C-V profiling; band offset; gallium phosphide; silicon;
D O I
10.1088/1361-6463/ac41fa
中图分类号
O59 [应用物理学];
学科分类号
摘要
Microcrystalline gallium phosphide (GaP)/Si multilayer structures grown on GaP substrates using combination of plasma enhanced atomic layer deposition (PE-ALD) for GaP and plasma-enhanced chemical vapor deposition for Si layers deposition are studied by three main space charge capacitance techniques: capacitance versus voltage (C-V) profiling, admittance spectroscopy (AS) and deep level transient spectroscopy (DLTS), which have been used on Schottky barriers formed on the GaP/Si multilayer structures. C-V profiling qualitatively demonstrates an electron accumulation in the Si/GaP wells. However, quantitative determination of the concentration and spatial position of its maximum is limited by the strong frequency dependence of the capacitance caused by electron capture/emission processes in/from the Si/GaP wells. These processes lead to signatures in AS and DLTS with activation energies equal to 0.39 +/- 0.05 and 0.28 +/- 0.05 eV, respectively, that are linked to the energy barrier at the GaP/Si interface. It is shown that the value obtained by AS (0.39 +/- 0.05 eV) is related to the response from Si/GaP wells located in the quasi-neutral region of the Schottky barrier, and it corresponds to the conduction band offset at the GaP/Si interface, while DLTS rather probes wells located in the space charge region closer to the Schottky interface where the internal electric field yields to a lowering of the effective barrier in the Si/GaP wells. Two additional signatures were detected by DLTS, which are identified as defect levels in GaP. The first one is associated to the Si-Ga + V-P complex, while the second was already detected in single microcrystalline GaP layers grown by PE-ALD.
引用
收藏
页数:9
相关论文
共 26 条
[1]   Electrical characterization of InP/GaInP quantum dots by space charge spectroscopy [J].
Anand, S ;
Carlsson, N ;
Pistol, ME ;
Samuelson, L ;
Seifert, W .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (07) :3747-3755
[2]  
Baranov A. I., 2019, Journal of Physics: Conference Series, V1410, DOI 10.1088/1742-6596/1410/1/012116
[3]   Defect properties of solar cells with layers of GaP based dilute nitrides grown by molecular beam epitaxy [J].
Baranov, Artem, I ;
Gudovskikh, Alexander S. ;
Egorov, Anton Yu ;
Kudryashov, Dmitry A. ;
Le Gall, Sylvain ;
Kleider, Jean-Paul .
JOURNAL OF APPLIED PHYSICS, 2020, 128 (02)
[4]   MOVPE Grown Gallium Phosphide-Silicon Heterojunction Solar Cells [J].
Feifel, Markus ;
Ohlmann, Jens ;
Benick, Jan ;
Rachow, Thomas ;
Janz, Stefan ;
Hermle, Martin ;
Dimroth, Frank ;
Belz, Juergen ;
Beyer, Andreas ;
Volz, Kerstin ;
Lackner, David .
IEEE JOURNAL OF PHOTOVOLTAICS, 2017, 7 (02) :502-507
[5]  
Forrest S.R., 1987, HETEROJUNCTION BAND, P311
[6]   Multijunction solar cells concept based on GaP/Si nanostructures [J].
Gudovskikh, A. S. ;
Uvarov, A. V. ;
Morozov, I. A. ;
Baranov, A. I. ;
Kudryashov, D. A. ;
Zelentsov, K. S. .
MATERIALS TODAY-PROCEEDINGS, 2019, 19 :47-52
[7]   Study of GaP/Si heterojunction solar cells [J].
Gudovskikh, A. S. ;
Zelentsov, K. S. ;
Baranov, A. I. ;
Kudryashov, D. A. ;
Morozov, I. A. ;
Nikitina, E. V. ;
Kleider, J. -P. .
PROCEEDINGS OF THE 2016 E-MRS SPRING MEETING SYMPOSIUM T - ADVANCED MATERIALS AND CHARACTERIZATION TECHNIQUES FOR SOLAR CELLS III, 2016, 102 :56-63
[8]   Low temperature plasma enhanced deposition approach for fabrication of microcrystalline GaP/Si superlattice [J].
Gudovskikh, Alexander S. ;
Uvarov, Alexander V. ;
Morozov, Ivan A. ;
Baranov, Artem I. ;
Kudryashov, Dmitriy A. ;
Zelentsov, Kirill S. ;
Bukatin, Anton S. ;
Kotlyar, Konstantin P. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (02)
[9]   Low temperature plasma enhanced deposition of GaP films on Si substrate [J].
Gudovskikh, Alexander S. ;
Morozov, Ivan A. ;
Uvarov, Alexander V. ;
Kudryashov, Dmitriy A. ;
Nikitina, Ekaterina V. ;
Bukatin, Anton S. ;
Nevedomskiy, Vladimir N. ;
Kleider, Jean-Paul .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (02)
[10]  
Jingguang C, 1994, PHYS REV B, V50, P18167, DOI [10.1103/PhysRevB.50.18167, DOI 10.1103/PHYSREVB.50.18167]