A Multiband/Multistandard 15-57 GHz Receive Phased-Array Module Based on 4 x 1 Beamformer IC and Supporting 5G NR FR2 Operation

被引:39
作者
Alhamed, Abdulrahman [1 ]
Kazan, Oguz [1 ]
Gultepe, Gokhan [1 ]
Rebeiz, Gabriel M. [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
关键词
Beamformer; data link; error vector magnitude (EVM); fifth generation (5G); flip-chip; millimeter wave (mm-wave); multiband; phased array; printed circuit board (PCB); quadrature amplitude modulation (QAM); receiver; SiGe; Vivaldi antenna; wideband; TAPERED SLOT ANTENNA; FRONT-END; TRANSCEIVER; NETWORK; LINKS; GB/S;
D O I
10.1109/TMTT.2021.3136256
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a 15-57 GHz multiband/multistandard phased-array architecture for the fifth-generation (5G) new radio (NR) frequency range 2 (FR2) bands. An eight-element phased-array receive module is demonstrated based on two four-channel wideband beamformer chips designed in the SiGe BiCMOS process and flipped on a low-cost printed circuit board. The SiGe Rx chip employs RF beamforming and is designed to interface to a wideband differential Vivaldi antenna array. Each channel consists of a low-noise amplifier (LNA), active phase shifter with 5-bit resolution, variable gain amplifier (VGA), and differential-to-single-ended stage. The four channels are combined using a wideband two-stage on-chip Wilkinson network. The beamformer has a peak electronic gain of 24-25 dB and a 4.7-6.2 dB noise figure (NF) with a -29 to -24 dBm input P im at 20-40 GHz. The eight-element phased-array module also achieved ultra-wideband frequency response with flat gain and low-system NF. The phased array scans +/- 55 degrees with <-12-dB sidelobes demonstrating multiband operation. A 1.2-m over-the-air (OTA) link measurement using the eight-element Rx module supports 400-MHz 256-QAM OFDMA modulation with <2.76% error vector magnitude (EVM) at multiple 5G NR FR2 hands. To the author's knowledge, this work achieves the widest bandwidth phased array enabling the construction of multistandard systems.
引用
收藏
页码:1732 / 1744
页数:13
相关论文
共 51 条
[1]   A 28-37 GHz Triple-Stage Transformer-Coupled SiGe LNA with 2.5 dB Minimum NF for Low Power Wideband Phased Array Receivers [J].
Alhamed, Abdulrahman A. ;
Rebeiz, Gabriel M. .
2020 IEEE BICMOS AND COMPOUND SEMICONDUCTOR INTEGRATED CIRCUITS AND TECHNOLOGY SYMPOSIUM (BCICTS), 2020,
[2]  
Alhamed AA, 2020, IEEE MTT S INT MICR, P1011, DOI 10.1109/IMS30576.2020.9224062
[3]   38-GHz Phased Array Transmitter and Receiver Based on Scalable Phased Array Modules With Endfire Antenna Arrays for 5G MMW Data Links [J].
Chen, Chun-Nien ;
Lin, Yi-Hsien ;
Hung, Li-Cheng ;
Tang, Tzu-Chien ;
Chao, Wei-Pang ;
Chen, Cheng-Yu ;
Chuang, Po-Hsiang ;
Lin, Guan-Yu ;
Liao, Wei-Jun ;
Nien, Yu-Hsiang ;
Huang, Wei-Cheng ;
Kuo, Tai-Yu ;
Lin, Kun-You ;
Huang, Tian-Wei ;
Lin, Yi-Cheng ;
Lu, Hsin-Chia ;
Tsai, Tsung-Heng ;
Wang, Huei .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (01) :980-999
[4]  
Dunworth JD, 2018, ISSCC DIG TECH PAP I, P70, DOI 10.1109/ISSCC.2018.8310188
[5]   A 20-42-GHz IQ Receiver in 22-nm CMOS FD-SOI With 2.7-4.2-dB NF and-25-dBm IP1dB for Wideband 5G Systems [J].
Gao, Li ;
Rebeiz, Gabriel M. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (11) :4951-4960
[6]   A 22-44-GHz Phased-Array Receive Beamformer in 45-nm CMOS SOI for 5G Applications With 3-3.6-dB NF [J].
Gao, Li ;
Rebeiz, Gabriel M. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (11) :4765-4774
[7]   A 24.5-43.5-GHz Ultra-Compact CMOS Receiver Front End With Calibration-Free Instantaneous Full-Band Image Rejection for Multiband 5G Massive MIMO [J].
Huang, Min-Yu ;
Chi, Taiyun ;
Li, Sensen ;
Huang, Tzu-Yuan ;
Wang, Hua .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (05) :1177-1186
[8]  
Huang MY, 2019, ISSCC DIG TECH PAP I, V62, P346, DOI 10.1109/ISSCC.2019.8662425
[9]   120-GHz 8-Stage Broadband Amplifier With Quantitative Stagger Tuning Technique [J].
Jang, Tae Hwan ;
Jung, Kyung Pil ;
Kang, Jin-Seob ;
Byeon, Chul Woo ;
Park, Chul Soon .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (03) :785-796
[10]  
JOHANSSON JF, 1995, ASTR SOC P, V75, P82