A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations

被引:268
作者
Yentekakis, Ioannis, V [1 ]
Panagiotopoulou, Paraskevi [2 ]
Artemakis, Georgios [1 ]
机构
[1] Tech Univ Crete, Sch Environm Engn, Lab Phys Chem & Chem Proc, GR-73100 Khania, Greece
[2] Tech Univ Crete, Sch Environm Engn, Lab Environm Catalysis, GR-73100 Khania, Greece
关键词
CO2 reforming of methane; Bimetallic catalysts; Ni-based catalysts; Noble metal catalysts; Transition metal catalysts; SUPPORTED NI CATALYSTS; LONG-TERM STABILITY; CARBON-DIOXIDE; SYNTHESIS GAS; CHEMICAL CONVERSION; HYDROGEN-PRODUCTION; NI/AL2O3; CATALYST; NOBLE-METAL; HETEROGENEOUS CATALYSTS; MOLYBDENUM CARBIDE;
D O I
10.1016/j.apcatb.2021.120210
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dry (CO2) reforming of methane (DRM) for syngas production, a critical feedstock for the production of hydrogen, ammonia, and Fischer-Tropsch derived liquid energy carriers, unequivocally ranks among the top issues of applied catalysis in the light of environmental protection, renewable energy production and circular economy. This mainly because DRM involves the simultaneous reduction of two key greenhouse gases (CO2 and CH4) and provides an efficient way for CO2 utilization/recycling and the direct implementation of biogas. The same advantages make DRM a more favorable process compared to steam- or oxi- reforming ones. The design of cost-effective, efficient and robust (coking- and sintering-resistant) DRM catalysts is a grand challenge in the topic. Bimetallic catalysts, providing synergistic effects via metal-to-metal interactions seem to be an effective strategy for achieving these goals. A review of the recent literature achievements on DRM using bimetallic catalyst formulations is provided herein in a comprehensive and comparative manner.
引用
收藏
页数:41
相关论文
共 192 条
[1]   A review on catalyst development for dry reforming of methane to syngas: Recent advances [J].
Abdulrasheed, Abdulrahman ;
Jalil, Aishah Abdul ;
Gambo, Yahya ;
Ibrahim, Maryam ;
Hambali, Hambali Umar ;
Hamill, Muhamed Yusuf Shahul .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 108 :175-193
[2]   Atomically dispersed nickel as coke-resistant active sites for methane dry reforming [J].
Akri, Mohcin ;
Zhao, Shu ;
Li, Xiaoyu ;
Zang, Ketao ;
Lee, Adam F. ;
Isaacs, Mark A. ;
Xi, Wei ;
Gangarajula, Yuvaraj ;
Luo, Jun ;
Ren, Yujing ;
Cui, Yi-Tao ;
Li, Lei ;
Su, Yang ;
Pan, Xiaoli ;
Wen, Wu ;
Pan, Yang ;
Wilson, Karen ;
Li, Lin ;
Qiao, Botao ;
Ishii, Hirofumi ;
Liao, Yen-Fa ;
Wang, Aiqin ;
Wang, Xiaodong ;
Zhang, Tao .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2 -reforming of methane [J].
Al-Fatesh, Ahmed S. ;
Arafat, Yasir ;
Kasim, Samsudeen O. ;
Ibrahim, Ahmed A. ;
Abasaeed, Ahmed E. ;
Fakeeha, Anis H. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 280
[4]   Ni supported on La2O3+ZrO2 for dry reforming of methane: The impact of surface adsorbed oxygen species [J].
Al-Fatesh, Ahmed Sadeq ;
Fakeeha, Anis Hamza ;
Ibrahim, Ahmed Aidid ;
Abasaeed, Ahmed Elhag .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (05) :3780-3788
[5]   CO2 reforming of methane over Ni-Ru supported catalysts: On the nature of active sites by operando DRIFTS study [J].
Alvarez M, A. ;
Bobadilla, L. F. ;
Garcilaso, V. ;
Centeno, M. A. ;
Odriozola, J. A. .
JOURNAL OF CO2 UTILIZATION, 2018, 24 :509-515
[6]   Highly stable ytterbium promoted Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane [J].
Amin, Mohamad Hassan ;
Mantri, Kshudiram ;
Newnham, Jarrod ;
Tardio, James ;
Bhargava, Suresh K. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 119 :217-226
[7]   First-principles study of methane dehydrogenation on a bimetallic Cu/Ni(111) surface [J].
An, Wei ;
Zeng, X. C. ;
Turner, C. Heath .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (17)
[8]   Production of hydrogen by methane dry reforming over ruthenium-nickel based catalysts deposited on Al2O3, MgAl2O4, and YSZ [J].
Andraos, S. ;
Abbas-Ghaleb, R. ;
Chlala, D. ;
Vita, A. ;
Italiano, C. ;
Lagana, M. ;
Pino, L. ;
Nakhl, M. ;
Specchia, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (47) :25706-25716
[9]   Ru-Ni Catalyst in the Combined Dry-Steam Reforming of Methane: The Importance in the Metal Order Addition [J].
Andrea Alvarez, M. ;
Angel Centeno, Miguel ;
Antonio Odriozola, Jose .
TOPICS IN CATALYSIS, 2016, 59 (2-4) :303-313
[10]   Catalyst design for dry reforming of methane: Analysis review [J].
Aramouni, Nicolas Abdel Karim ;
Touma, Jad G. ;
Abu Tarboush, Belal ;
Zeaiter, Joseph ;
Ahmad, Mohammad N. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :2570-2585