Double-gated Si NW FET sensors: Low-frequency noise and photoelectric properties

被引:8
作者
Gasparyan, F. [1 ,2 ]
Khondkaryan, H. [1 ]
Arakelyan, A. [1 ]
Zadorozhnyi, I. [2 ]
Pud, S. [2 ]
Vitusevich, S. [2 ]
机构
[1] Yerevan State Univ, 1 Alex Manoogian St, Yerevan 0025, Armenia
[2] Forschungszentrum Julich, Peter Grunberg Inst PGI 8, D-52425 Julich, Germany
关键词
OPTICAL-PROPERTIES; SILICON;
D O I
10.1063/1.4960704
中图分类号
O59 [应用物理学];
学科分类号
摘要
The transport, noise, and photosensitivity properties of an array of silicon nanowire (NW) p(+)-p-p(+) field-effect transistors (FETs) are investigated. The peculiarities of photosensitivity and detectivity are analyzed over a wide spectrum range. The absorbance of p-Si NW shifts to the short wavelength region compared with bulk Si. The photocurrent and photosensitivity reach increased values in the UV range of the spectrum at 300 K. It is shown that sensitivity values can be tuned by the drain-source voltage and may reach record values of up to 2-4 A/W at a wavelength of 300 nm at room temperature. Low-frequency noise studies allow calculating the photodetectivity values, which increase with decreasing wavelength down to 300 nm. We show that the drain current of Si NW biochemical sensors substantially depends on pH value and the signal-to-noise ratio reaches the high value of 10(5). Increasing pH sensitivity with gate voltage is revealed for certain source-drain currents of pH-sensors based on Si NW FETs. The noise characteristic index decreases from 1.1 to 0.7 with the growth of the liquid gate voltage. Noise behavior is successfully explained in the framework of the correlated number-mobility unified fluctuation model. pH sensitivity increases as a result of the increase in liquid gate voltage, thus giving the opportunity to measure very low proton concentrations in the electrolyte medium at certain values of the liquid gate voltage. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 42 条
[1]   A pH sensor with a double-gate silicon nanowire field-effect transistor [J].
Ahn, Jae-Hyuk ;
Kim, Jee-Yeon ;
Seol, Myeong-Lok ;
Baek, David J. ;
Guo, Zheng ;
Kim, Chang-Hoon ;
Choi, Sung-Jin ;
Choi, Yang-Kyu .
APPLIED PHYSICS LETTERS, 2013, 102 (08)
[2]  
Bedner K, 2013, SENSOR MATER, V25, P567
[3]   First-principles optical properties of silicon and germanium nanowires [J].
Bruno, M. ;
Palummo, M. ;
Ossicini, S. ;
Del Sole, R. .
SURFACE SCIENCE, 2007, 601 (13) :2707-2711
[4]  
Chen G., 2008, SPIE NEWSROOM
[5]   Mechanism and Optimization of pH Sensing Using SnO2 Nanobelt Field Effect Transistors [J].
Cheng, Yi ;
Xiong, P. ;
Yun, C. Steven ;
Strouse, G. F. ;
Zheng, J. P. ;
Yang, R. S. ;
Wang, Z. L. .
NANO LETTERS, 2008, 8 (12) :4179-4184
[6]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[7]   Single Si nanowire (diameter ≤ 100 nm) based polarization sensitive near-infrared photodetector with ultra-high responsivity [J].
Das, K. ;
Mukherjee, S. ;
Manna, S. ;
Ray, S. K. ;
Raychaudhuri, A. K. .
NANOSCALE, 2014, 6 (19) :11232-11239
[8]   Photodiode based on epitaxial silicon with high sensitivity at the wavelength 254 nm [J].
Dobrovolskyi, Yu. ;
Pidkamin, L. ;
Brus, V. ;
Kuzenko, V. .
SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2014, 17 (03) :256-259
[9]   Signal-to-Noise Ratio Enhancement of Silicon Nanowires Biosensor with Rolling Circle Amplification [J].
Gao, Anran ;
Zou, Nengli ;
Dai, Pengfei ;
Lu, Na ;
Li, Tie ;
Wang, Yuelin ;
Zhao, Jianlong ;
Mao, Hongju .
NANO LETTERS, 2013, 13 (09) :4123-4130
[10]   Light Trapping in Silicon Nanowire Solar Cells [J].
Garnett, Erik ;
Yang, Peidong .
NANO LETTERS, 2010, 10 (03) :1082-1087