HVAF vs oxygenated HVAF spraying: Fundamental understanding to optimize Cr3C2-NiCr coatings for elevated temperature erosion resistant applications

被引:18
作者
Alroy, Rahul Jude [1 ]
Kamaraj, M. [2 ]
Sivakumar, G. [1 ]
机构
[1] Int Adv Res Ctr Powder Met & New Mat ARCI, Ctr Engn Coatings, Hyderabad 500005, Telangana, India
[2] Indian Inst Technol, Dept Met & Mat Engn, Madras 600036, Tamil Nadu, India
关键词
HVAF; Cr3C2-NiCr; Splat morphology; High-temperature erosion; THERMAL SPRAY; MICROSTRUCTURE FORMATION; WC-CO; HVOF; BEHAVIOR; MORPHOLOGY; CHROMIUM;
D O I
10.1016/j.jmatprotec.2022.117735
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High velocity sprayed Cr3C2-NiCr coatings are a viable solution to improve the life of power plant components and are often influenced by the choice of processing conditions. The new generation convertible high-velocity air-fuel (HVAF) process offers higher versatility to spray wide ranging particle sizes including the standard high-velocity oxyfuel (HVOF) grade. However, the use of such oxygenated spraying termed as 'HVAF(O)' mode necessitates better understanding for reliable and repeatable coating. Single particle splat morphology and fracture mechanisms of HVAF and HVAF(O) sprayed Cr3C2-NiCr coatings were correlated with the microstructural features, mechanical properties and erosion performance with two different particle sizes. Among the coatings studied, HVAF(O) sprayed coarse Cr3C2-NiCr and HVAF sprayed fine Cr3C2-NiCr provided the least thermal degradation, and better mechanical properties which collectively ensured enhanced erosion performance. The overall coating performance can be attributed to the appropriate choice of process conditions and suitable particle size. In comparison with conventional HVOF process that generally induces a certain degree of thermal degradation within the hard carbides, oxygenated HVAF(O) sprayed Cr3C2-NiCr coating still retained most of the starting carbide phase with minimal thermal degradation, which resulted in superior erosion performance.
引用
收藏
页数:14
相关论文
共 30 条
[11]  
Kim Y., 2013, Journal of Materials, V2013, P1, DOI DOI 10.1155/2013/260758
[12]   Dominant effect of carbide rebounding on the carbon loss during high velocity oxy-fuel spraying of Cr3C2-NiCr [J].
Li, CJ ;
Ji, GC ;
Wang, YY ;
Sonoya, K .
THIN SOLID FILMS, 2002, 419 (1-2) :137-143
[13]   Microstructural evolution of carbides and its effect on tribological properties of SAPS or HVOF sprayed NiCr-Cr3C2 coatings [J].
Liu, Q. ;
Bai, Y. ;
Wang, H. D. ;
Ma, G. Z. ;
Liu, M. ;
Chu, C. Y. ;
Sun, Y. W. ;
Fan, W. ;
Ding, E. ;
Zhao, B. ;
Wang, Y. T. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 803 :730-741
[14]   A study of Cr3C2-based HVOF- and HVAF-sprayed coatings: Abrasion, dry particle erosion and cavitation erosion resistance [J].
Matikainen, V ;
Koivuluoto, H. ;
Vuoristo, P. .
WEAR, 2020, 446
[15]   Effect of Nozzle Geometry on the Microstructure and Properties of HVAF-Sprayed WC-10Co4Cr and Cr3C2-25NiCr Coatings [J].
Matikainen, V. ;
Koivuluoto, H. ;
Vuoristo, P. ;
Schubert, J. ;
Houdkova, S. .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2018, 27 (04) :680-694
[16]   A Study of Cr3C2-Based HVOF- and HVAF-Sprayed Coatings: Microstructure and Carbide Retention [J].
Matikainen, V. ;
Bolelli, G. ;
Koivuluoto, H. ;
Honkanen, M. ;
Vippola, M. ;
Lusvarghi, L. ;
Vuoristo, P. .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2017, 26 (06) :1239-1256
[17]   Erosion of oxide scales formed on Cr3C2-NiCr thermal spray coatings [J].
Matthews, S. ;
James, B. ;
Hyland, M. .
CORROSION SCIENCE, 2008, 50 (11) :3087-3094
[18]   High temperature erosion of Cr3C2-NiCr thermal spray coatings - The role of phase microstructure [J].
Matthews, S. ;
James, B. ;
Hyland, M. .
SURFACE & COATINGS TECHNOLOGY, 2009, 203 (09) :1144-1153
[19]   Microstructural influence on erosion behaviour of thermal spray coatings [J].
Matthews, S. J. ;
James, B. J. ;
Hyland, M. M. .
MATERIALS CHARACTERIZATION, 2007, 58 (01) :59-64
[20]   Microstructure dependent erosion in Cr3C2-20(NiCr) coating deposited by a detonation gun [J].
Murthy, J. K. N. ;
Bysakh, S. ;
Gopinath, K. ;
Venkataraman, B. .
SURFACE & COATINGS TECHNOLOGY, 2007, 202 (01) :1-12