Creating and Validating a DNA Methylation-Based Proxy for Interleukin-6

被引:17
|
作者
Stevenson, Anna J. [1 ,2 ]
Gadd, Danni A. [1 ]
Hillary, Robert F. [1 ]
McCartney, Daniel L. [1 ]
Campbell, Archie [1 ]
Walker, Rosie M. [1 ,3 ]
Evans, Kathryn L. [1 ]
Harris, Sarah E. [4 ,5 ]
Spires-Jones, Tara L. [2 ,6 ]
McRae, Allan F. [7 ]
Visscher, Peter M. [7 ]
McIntosh, Andrew M. [8 ]
Deary, Ian J. [4 ,5 ]
Marioni, Riccardo E. [1 ,4 ]
机构
[1] Univ Edinburgh, Ctr Genom & Expt Med, Inst Genet & Mol Med, Western Gen Hosp Campus,Crewe Rd, Edinburgh EH4 2XU, Midlothian, Scotland
[2] Univ Edinburgh, Edinburgh Med Sch, UK Dementia Res Inst, Edinburgh, Midlothian, Scotland
[3] Edinburgh BioQuarter, Ctr Clin Brain Sci, Edinburgh, Midlothian, Scotland
[4] Univ Edinburgh, Lothian Birth Cohorts, Edinburgh, Midlothian, Scotland
[5] Univ Edinburgh, Dept Psychol, Edinburgh, Midlothian, Scotland
[6] Univ Edinburgh, Ctr Discovery Brain Sci, Edinburgh, Midlothian, Scotland
[7] Univ Queensland, Inst Mol Biosci, Brisbane, Qld, Australia
[8] Univ Edinburgh, Royal Edinburgh Hosp, Div Psychiat, Edinburgh, Midlothian, Scotland
来源
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES | 2021年 / 76卷 / 12期
基金
英国医学研究理事会; 美国国家卫生研究院; 英国惠康基金; 澳大利亚研究理事会; 欧洲研究理事会;
关键词
Cognitive ability; DNA methylation; Epigenetics; Inflammation; Interleukin-6; CIRCULATING LEVELS; CIGARETTE-SMOKING; PLASMA-LEVELS; INFLAMMATION; IL-6; DISEASE; EXPRESSION; RECEPTOR; SITES; SERUM;
D O I
10.1093/gerona/glab046
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Background: Studies evaluating the relationship between chronic inflammation and cognitive functioning have produced heterogeneous results. A potential reason for this is the variability of inflammatory mediators which could lead to misclassifications of individuals' persisting levels of inflammation. DNA methylation (DNAm) has shown utility in indexing environmental exposures and could be leveraged to provide proxy signatures of chronic inflammation. Method: We conducted an elastic net regression of interleukin-6 (IL-6) in a cohort of 875 older adults (Lothian Birth Cohort 1936; mean age: 70 years) to develop a DNAm-based predictor. The predictor was tested in an independent cohort (Generation Scotland; N = 7028 [417 with measured IL-6], mean age: 51 years). Results: A weighted score from 35 CpG sites optimally predicted IL-6 in the independent test set (Generation Scotland; R-2 = 4.4%, p = 2.1 x 10(-5)). In the independent test cohort, both measured IL-6 and the DNAm proxy increased with age (serum IL-6: n = 417, beta = 0.02, SE = 0.004, p = 1.3 x 10(-7); DNAm IL-6 score: N = 7028, beta = 0.02, SE = 0.0009, p < 2 x 10(-16)). Serum IL-6 did not associate with cognitive ability (n = 417, beta = -0.06, SE = 0.05, p = .19); however, an inverse association was identified between the DNAm score and cognitive functioning (N = 7028, beta = -0.16, SE = 0.02, P-FDR < 2 x 10(-16)). Conclusions: These results suggest methylation-based predictors can be used as proxies for inflammatory markers, potentially allowing for further insight into the relationship between inflammation and pertinent health outcomes.
引用
收藏
页码:2284 / 2292
页数:9
相关论文
共 50 条
  • [21] Expression, polymorphism and methylation pattern of interleukin-6 in periodontal tissues
    Stefani, Florenca Abdanur
    Viana, Michelle Beatriz
    Dupim, Ana Carolina
    Ricieri Brito, Joao Artur
    Gomez, Ricardo Santiago
    da Costa, Jose Eustaquio
    Moreira, Paula Rocha
    IMMUNOBIOLOGY, 2013, 218 (07) : 1012 - 1017
  • [22] Intratumor DNA methylation heterogeneity in glioblastoma: implications for DNA methylation-based classification
    Wenger, Anna
    Vega, Sandra Ferreyra
    Kling, Teresia
    Bontell, Thomas Olsson
    Jakola, Asgeir Store
    Caren, Helena
    NEURO-ONCOLOGY, 2019, 21 (05) : 616 - 627
  • [23] Quantification of Fetal DNA by Use of Methylation-Based DNA Discrimination
    Nygren, Anders O. H.
    Dean, Jarrod
    Jensen, Taylor J.
    Kruse, Selena
    Kwong, William
    van den Boom, Dirk
    Ehrich, Mathias
    CLINICAL CHEMISTRY, 2010, 56 (10) : 1627 - 1635
  • [24] DNA Methylation-Based Prediction of Post-operative Atrial Fibrillation
    Fischer, Matthew A.
    Mahajan, Aman
    Cabaj, Maximilian
    Kimball, Todd H.
    Morselli, Marco
    Soehalim, Elizabeth
    Chapski, Douglas J.
    Montoya, Dennis
    Farrell, Colin P.
    Scovotti, Jennifer
    Bueno, Claudia T.
    Mimila, Naomi A.
    Shemin, Richard J.
    Elashoff, David
    Pellegrini, Matteo
    Monte, Emma
    Vondriska, Thomas M.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [25] DNA methylation at promoter regions of interleukin 1B, interleukin 6, and interleukin 8 in non-small cell lung cancer
    Tekpli, Xavier
    Landvik, Nina E.
    Anmarkud, Kristine H.
    Skaug, Vidar
    Haugen, Aage
    Zienolddiny, Shanbeh
    CANCER IMMUNOLOGY IMMUNOTHERAPY, 2013, 62 (02) : 337 - 345
  • [26] DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia
    Jessica Nordlund
    Christofer L Bäcklin
    Vasilios Zachariadis
    Lucia Cavelier
    Johan Dahlberg
    Ingegerd Öfverholm
    Gisela Barbany
    Ann Nordgren
    Elin Övernäs
    Jonas Abrahamsson
    Trond Flaegstad
    Mats M Heyman
    Ólafur G Jónsson
    Jukka Kanerva
    Rolf Larsson
    Josefine Palle
    Kjeld Schmiegelow
    Mats G Gustafsson
    Gudmar Lönnerholm
    Erik Forestier
    Ann-Christine Syvänen
    Clinical Epigenetics, 2015, 7
  • [27] A DNA methylation-based definition of biologically distinct breast cancer subtypes
    Stefansson, Olafur A.
    Moran, Sebastian
    Gomez, Antonio
    Sayols, Sergi
    Arribas-Jorba, Carlos
    Sandoval, Juan
    Hilrnarsdottir, Holrnfridur
    Olafsdottir, Elinborg
    Tryggvadottir, Laufey
    Jonasson, Jon G.
    Eyfjord, Jorunn
    Esteller, Manel
    MOLECULAR ONCOLOGY, 2015, 9 (03) : 555 - 568
  • [28] DNA methylation-based measures of biological age: meta-analysis predicting time to death
    Chen, Brian H.
    Marioni, Riccardo E.
    Colicino, Elena
    Peters, Marjolein J.
    Ward-Caviness, Cavin K.
    Tsai, Pei-Chien
    Roetker, Nicholas S.
    Just, Allan C.
    Demerath, Ellen W.
    Guan, Weihua
    Bressler, Jan
    Fornage, Myriam
    Studenski, Stephanie
    Vandiver, Amy R.
    Moore, Ann Zenobia
    Tanaka, Toshiko
    Kiel, Douglas P.
    Liang, Liming
    Vokonas, Pantel
    Schwartz, Joel
    Lunetta, Kathryn L.
    Murabito, Joanne M.
    Bandinelli, Stefania
    Hernandez, Dena G.
    Melzer, David
    Nalls, Michael
    Pilling, Luke C.
    Price, Timothy R.
    Singleton, Andrew B.
    Gieger, Christian
    Holle, Rolf
    Kretschmer, Anja
    Kronenberg, Florian
    Kunze, Sonja
    Linseisen, Jakob
    Meisinger, Christine
    Rathmann, Wolfgang
    Waldenberger, Melanie
    Visscher, Peter M.
    Shah, Sonia
    Wray, Naomi R.
    McRae, Allan F.
    Franco, Oscar H.
    Hofman, Albert
    Uitterlinden, Andre G.
    Absher, Devin
    Assimes, Themistocles
    Levine, Morgan E.
    Lu, Ake T.
    Tsao, Philip S.
    AGING-US, 2016, 8 (09): : 1844 - 1865
  • [29] DNA Methylation-based Diagnostic and Prognostic Biomarkers for Glioblastoma
    Tang, Yunliang
    Qing, Cheng
    Wang, Jiao
    Zeng, Zhenguo
    CELL TRANSPLANTATION, 2020, 29
  • [30] DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia
    Nordlund, Jessica
    Backlin, Christofer L.
    Zachariadis, Vasilios
    Cavelier, Lucia
    Dahlberg, Johan
    Ofverholm, Ingegerd
    Barbany, Gisela
    Nordgren, Ann
    Overnas, Elin
    Abrahamsson, Jonas
    Flaegstad, Trond
    Heyman, Mats M.
    Jonsson, Olafur G.
    Kanerva, Jukka
    Larsson, Rolf
    Palle, Josefine
    Schmiegelow, Kjeld
    Gustafsson, Mats G.
    Lonnerholm, Gudmar
    Forestier, Erik
    Syvanen, Ann-Christine
    CLINICAL EPIGENETICS, 2015, 7