Eigenvalue Problem for Discrete Jacobi-Sobolev Orthogonal Polynomials

被引:3
作者
Manas-Manas, Juan F. [1 ]
Moreno-Balcazar, Juan J. [1 ,2 ]
Wellman, Richard [3 ]
机构
[1] Univ Almeria, Dept Matemat, Almeria 04120, Spain
[2] Inst Carlos I Fis Teor & Computac, Granada 18071, Spain
[3] Colorado Coll, Dept Math & Comp Sci, Colorado Springs, CO 80903 USA
关键词
Sobolev orthogonal polynomials; Jacobi weight; asymptotics; N)-COHERENT PAIRS; ASYMPTOTICS; RESPECT; (M;
D O I
10.3390/math8020182
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential operator, we are interested in the corresponding eigenvalues, more exactly, in their asymptotic behavior. Thus, we can determine a limit value which links this asymptotic behavior and the uniform norm of the orthonormal polynomials in a logarithmic scale. This value appears in the theory of reproducing kernel Hilbert spaces. On the other hand, we tackle a more general case than the one considered in the literature previously.
引用
收藏
页数:19
相关论文
共 37 条
  • [1] Orthogonality of the Jacobi polynomials with negative integer parameters
    Alfaro, M
    de Morales, MA
    Rezola, ML
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 145 (02) : 379 - 386
  • [2] Alfaro M., 1999, Methods Appl. Anal, V6, P593, DOI DOI 10.4310/MAA.1999.V6.N4.A10
  • [3] Althammer P., 1962, J. Reine Angew. Math, V211, P192, DOI DOI 10.1515/CRLL.1962.211.192
  • [4] Jacobi-Sobolev-type orthogonal polynomials: Second-order differential equation and zeros
    Arvesu, J
    Alvarez-Nodarse, R
    Marcellan, F
    Pan, K
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 90 (02) : 135 - 156
  • [5] Askey R.A., 2010, NIST handbook of mathematical functions, P135
  • [6] Differential and difference operators having orthogonal polynomials with two linear perturbations as eigenfunctions
    Bavinck, H
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 92 (02) : 85 - 95
  • [7] Operational Methods in the Study of Sobolev-Jacobi Polynomials
    Behr, Nicolas
    Dattoli, Giuseppe
    Duchamp, Gerard H. E.
    Licciardi, Silvia
    Penson, Karol A.
    [J]. MATHEMATICS, 2019, 7 (02)
  • [8] (M, N)-coherent pairs of order (m, k) and Sobolev orthogonal polynomials
    de Jesus, M. N.
    Marcellan, F.
    Petronilho, J.
    Pinzon-Cortes, N. C.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 256 : 16 - 35
  • [9] Sobolev orthogonal polynomials and (M, N)-coherent pairs of measures
    de Jesus, M. N.
    Petronilho, J.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) : 83 - 101
  • [10] Sobolev orthogonality for the Gegenbauer polynomials {C7(-N+1/2)}n≥0
    de Morales, MA
    Pérez, TE
    Piñar, MA
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 100 (01) : 111 - 120