On annihilation of the relativistic electron vortex pair in collisionless plasmas

被引:8
作者
Lezhnin, K., V [1 ,2 ]
Kamenets, F. F. [3 ]
Esirkepov, T. Zh [4 ]
Bulanov, S., V [4 ,5 ,6 ]
机构
[1] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[2] Natl Res Nucl Univ MEPhI, Kashirskoe Sh 31, Moscow 115409, Russia
[3] Moscow Inst Phys & Technol, Inst Per 9, Dolgoprudnyi 141700, Moscow Region, Russia
[4] Natl Inst Quantum & Radiol Sci & Technol, 8-1-7 Umemidai, Kizugawa, Kyoto 6190215, Japan
[5] Czech Acad Sci Vvi FZU, Institute Phys, Slovance 1999-2, Prague 18221, Czech Republic
[6] Russian Acad Sci, Prokhorov Gen Phys Inst, Moscow 119991, Russia
关键词
plasma nonlinear phenomena; plasma simulation; plasma waves; TIME EVOLUTION; VORTICES;
D O I
10.1017/S0022377818001162
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In contrast to hydrodynamic vortices, vortices in a plasma contain an electric current circulating around the centre of the vortex, which generates a magnetic field localized inside. Using computer simulations, we demonstrate that the magnetic field associated with the vortex gives rise to a mechanism of dissipation of the vortex pair in a collisionless plasma, leading to fast annihilation of the magnetic field with its energy transforming into the energy of fast electrons, secondary vortices and plasma waves. Two major contributors to the energy damping of a double vortex system, namely, magnetic field annihilation and secondary vortex formation, are regulated by the size of the vortex with respect to the electron skin depth, which scales with the electron gamma factor, gamma(e), as R/d(e) proportional to gamma(1/2)(e). Magnetic field annihilation appears to be dominant in mildly relativistic vortices, while for the ultrarelativistic case, secondary vortex formation is the main channel for damping of the initial double vortex system.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Scattering of a vortex pair by a single quantum vortex in a Bose-Einstein condensate
    Smirnov, L. A.
    Smirnov, A. I.
    Mironov, V. A.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2016, 122 (01) : 17 - 31
  • [42] Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks
    Lapa, Pavel N.
    Ding, Junjia
    Phatak, Charudatta
    Pearson, John E.
    Jiang, J. S.
    Hoffmann, Axel
    Novosad, Valentine
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (08)
  • [43] ASYMPTOTIC OF STEADY VORTEX PAIR IN THE LAKE EQUATION
    Dekeyser, Justin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) : 1209 - 1237
  • [44] Desingularization of a Steady Vortex Pair in the Lake Equation
    Dekeyser, Justin
    POTENTIAL ANALYSIS, 2022, 56 (01) : 97 - 135
  • [45] Accelerating self-modulated nonlinear waves in weakly and strongly magnetized relativistic plasmas
    Asenjo, Felipe A.
    JOURNAL OF PLASMA PHYSICS, 2024, 90 (01)
  • [46] Modeling of relativistic plasmas with the Particle-In-Cell method
    Vay, Jean-Luc
    Godfrey, Brendan B.
    COMPTES RENDUS MECANIQUE, 2014, 342 (10-11): : 610 - 618
  • [47] Annihilation of vortex dipoles in an oblate Bose-Einstein condensate
    Prabhakar, Shashi
    Singh, R. P.
    Gautam, S.
    Angom, D.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (12)
  • [48] Released power in a vortex-antivortex pairs annihilation process
    Aguirre-Tellez, Cristian
    Rincon-Joya, Miryam
    Barba-Ortega, Jose Jose
    UIS INGENIERIAS, 2021, 20 (01): : 153 - 159
  • [49] Convective motion in collisionless trapped electron mode turbulence
    Xiao, Y.
    Lin, Z.
    PHYSICS OF PLASMAS, 2011, 18 (11)
  • [50] The vacuum-core vortex in relativistic perfect fluids
    Matsuoka, Chihiro
    Ishihara, Hideki
    PHYSICS OF FLUIDS, 2024, 36 (08)