On annihilation of the relativistic electron vortex pair in collisionless plasmas

被引:8
作者
Lezhnin, K., V [1 ,2 ]
Kamenets, F. F. [3 ]
Esirkepov, T. Zh [4 ]
Bulanov, S., V [4 ,5 ,6 ]
机构
[1] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[2] Natl Res Nucl Univ MEPhI, Kashirskoe Sh 31, Moscow 115409, Russia
[3] Moscow Inst Phys & Technol, Inst Per 9, Dolgoprudnyi 141700, Moscow Region, Russia
[4] Natl Inst Quantum & Radiol Sci & Technol, 8-1-7 Umemidai, Kizugawa, Kyoto 6190215, Japan
[5] Czech Acad Sci Vvi FZU, Institute Phys, Slovance 1999-2, Prague 18221, Czech Republic
[6] Russian Acad Sci, Prokhorov Gen Phys Inst, Moscow 119991, Russia
关键词
plasma nonlinear phenomena; plasma simulation; plasma waves; TIME EVOLUTION; VORTICES;
D O I
10.1017/S0022377818001162
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In contrast to hydrodynamic vortices, vortices in a plasma contain an electric current circulating around the centre of the vortex, which generates a magnetic field localized inside. Using computer simulations, we demonstrate that the magnetic field associated with the vortex gives rise to a mechanism of dissipation of the vortex pair in a collisionless plasma, leading to fast annihilation of the magnetic field with its energy transforming into the energy of fast electrons, secondary vortices and plasma waves. Two major contributors to the energy damping of a double vortex system, namely, magnetic field annihilation and secondary vortex formation, are regulated by the size of the vortex with respect to the electron skin depth, which scales with the electron gamma factor, gamma(e), as R/d(e) proportional to gamma(1/2)(e). Magnetic field annihilation appears to be dominant in mildly relativistic vortices, while for the ultrarelativistic case, secondary vortex formation is the main channel for damping of the initial double vortex system.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Theory of phase-space hydrodynamics of electron and ion holes in collisionless plasmas
    Lobo, Allen
    Sayal, Vinod Kumar
    PHYSICS OF PLASMAS, 2024, 31 (09)
  • [12] Quasi-parallel propagating solitons in magnetised relativistic electron-positron plasmas
    Ruderman, Michael S.
    Petrukhin, Nikolai S.
    Pelinovsky, Efim
    Kataeva, Liliya Y.
    JOURNAL OF PLASMA PHYSICS, 2023, 89 (02)
  • [13] On hydromagnetic wave interactions in collisionless, high-β plasmas
    Majeski, S.
    Kunz, M. W.
    JOURNAL OF PLASMA PHYSICS, 2024, 90 (01)
  • [14] Nonlinear electron scattering by electrostatic waves in collisionless shocks
    Kamaletdinov, Sergei R.
    Vasko, Ivan Y.
    Artemyev, Anton V.
    JOURNAL OF PLASMA PHYSICS, 2024, 90 (02)
  • [15] Kinetic Alfven wave generation by velocity shear in collisionless plasmas
    Maiorano, Teresa
    Settino, Adriana
    Malara, Francesco
    Pezzi, Oreste
    Pucci, Francesco
    Valentini, Francesco
    JOURNAL OF PLASMA PHYSICS, 2020, 86 (02)
  • [16] Scale statistics of current sheets in relativistic collisionless plasma turbulence
    Serrano, Roberto F.
    Nattila, Joonas
    Zhdankin, Vladimir
    JOURNAL OF PLASMA PHYSICS, 2025, 91 (02)
  • [17] Transient setting of relativistic ponderomotive non-linearity and filamentation of ultra-short laser pulses in collisionless plasmas
    Sharma, R. P.
    Kumar, Narender
    Uma, R.
    Singh, Ram Kishor
    Gupta, P. K.
    LASER AND PARTICLE BEAMS, 2019, 37 (03) : 252 - 259
  • [18] Relativistic modulational instability of electron-acoustic waves in an electron-pair ion plasma
    Misra, A. P.
    Shukla, P. K.
    PHYSICS OF PLASMAS, 2008, 15 (12)
  • [19] Two dimensional electrostatic shock waves in relativistic electron positron ion plasmas
    Masood, W.
    Rizvi, H.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [20] Quasi-parallel propagation of solitary waves in magnetised non-relativistic electron-positron plasmas
    Ruderman, Michael S.
    JOURNAL OF PLASMA PHYSICS, 2020, 86 (03)