Exact solutions and maximal dimension of invariant subspaces of time fractional coupled nonlinear partial differential equations

被引:49
作者
Sahadevan, R. [1 ]
Prakash, P. [1 ]
机构
[1] Univ Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, India
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 42卷
关键词
Time fractional coupled nonlinear PDEs; Invariant subspace method; Laplace transform method; Mittag-Leffler function; DIFFUSION EQUATION; NUMERICAL-SOLUTION; DECOMPOSITION; SYSTEMS; ORDER;
D O I
10.1016/j.cnsns.2016.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show how invariant subspace method can be extended to time fractional coupled nonlinear partial differential equations and construct their exact solutions. Effectiveness of the method has been illustrated through time fractional Hunter-Saxton equation, time fractional coupled nonlinear diffusion system, time fractional coupled Boussinesq equation and time fractional Whitman-Broer-Kaup system. Also we explain how maximal dimension of the time fractional coupled nonlinear partial differential equations can be estimated. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:158 / 177
页数:20
相关论文
共 42 条
  • [1] [Anonymous], 2006, THEORY APPL FRACTION
  • [2] [Anonymous], 2010, SPECIAL FUNCTIONS AP
  • [3] [Anonymous], 2000, Applications of Fractional Calculus in Physics
  • [4] [Anonymous], 1993, INTRO FRACTIONAL CA
  • [5] [Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
  • [6] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [7] Artale Harris P, 2013, Nonlinear Stud, V20, P471
  • [8] On solutions of two coupled fractional time derivative Hirota equations
    Bakkyaraj, T.
    Sahadevan, R.
    [J]. NONLINEAR DYNAMICS, 2014, 77 (04) : 1309 - 1322
  • [9] Bakkyaraj T., 2014, J FRACT CALC APPL, V5, P37
  • [10] Fractional Hamiltonian analysis of higher order derivatives systems
    Baleanu, Dumitru
    Muslih, Sami I.
    Tas, Kenan
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)