Visible-Light-Induced Dye Degradation over Copper-Modified Reduced Graphene Oxide

被引:99
作者
Xiong, Zhigang [1 ]
Zhang, Li Li [1 ]
Zhao, Xiu Song [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
关键词
catalytic degradation; copper; dyes/pigments; graphene; photochemistry; ENVIRONMENTAL PHOTOCHEMISTRY; PHOTOCATALYTIC DEGRADATION; GRAPHITE OXIDE; TIO2; SEMICONDUCTOR; PHOTODEGRADATION; IRRADIATION; ADSORPTION; REDUCTION; NANOCOMPOSITES;
D O I
10.1002/chem.201002906
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Previously, it was found that reduced graphene oxide (RGO) can degrade rhodamine B (RhB) under visible-light irradiation, but with an extraordinarily slow rate. It was also found that modification of RGO with gold nanoparticles can dramatically accelerate the photoreaction rate. Herein, we describe the preparation and photocatalytic properties of copper-ion-modified RGO composite materials, which display a faster photocatalytic reaction rate and better mineralization under visible-light irradiation than gold-modified RGO. The copper-ion-modified RGO composites were prepared by an immersion method. The characterization results of X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy show the presence of crystalline copper species Cu-2(OH)(3)NO3 and Cu-2(OH)(3)Cl on the surface of RGO. Modification of RGO with the copper species greatly enhances the degradation of RhB-after 3 hours of reaction under visible-light irradiation, the total organic carbon is decreased by about 31%. The copper species act as an electron relay, passing the excited electrons from the RGO sheets to adsorbed oxygen, thus leading to continuous generation of reactive oxygen species for the degradation of RhB.
引用
收藏
页码:2428 / 2434
页数:7
相关论文
共 47 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]   The enhancement of WO3-catalyzed photodegradation of organic substances utilizing the redox cycle of copper ions [J].
Arai, Takeo ;
Yanagida, Masatoshi ;
Konishi, Yoshinari ;
Ikura, Ami ;
Iwasaki, Yasukazu ;
Sugihara, Hideki ;
Sayama, Kazuhiro .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2008, 84 (1-2) :42-47
[3]   Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation:: A probe for the interfacial electron transfer process and reaction mechanism [J].
Chen, CC ;
Li, XZ ;
Ma, WH ;
Zhao, JC ;
Hidaka, H ;
Serpone, N .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (02) :318-324
[4]   Self-Assembled Free-Standing Graphite Oxide Membrane [J].
Chen, Chengmeng ;
Yang, Quan-Hong ;
Yang, Yonggang ;
Lv, Wei ;
Wen, Yuefang ;
Hou, Peng-Xiang ;
Wang, Maozhang ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2009, 21 (29) :3007-3011
[5]   Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite [J].
Cote, Laura J. ;
Cruz-Silva, Rodolfo ;
Huang, Jiaxing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (31) :11027-11032
[6]   Substrate-free gas-phase synthesis of graphene sheets [J].
Dato, Albert ;
Radmilovic, Velimir ;
Lee, Zonghoon ;
Phillips, Jonathan ;
Frenklach, Michael .
NANO LETTERS, 2008, 8 (07) :2012-2016
[7]   Adsorption of Cu(II) on the (0001) plane of mica: A REFLEXAFS and XPS study [J].
Farquhar, ML ;
Charnock, JM ;
England, KER ;
Vaughan, DJ .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 177 (02) :561-567
[8]  
Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]
[9]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[10]   Aqueous-Processable Noncovalent Chemically Converted Graphene-Quantum Dot Composites for Flexible and Transparent Optoelectronic Films [J].
Geng, Xiumei ;
Niu, Liang ;
Xing, Zhenyuan ;
Song, Rensheng ;
Liu, Guangtong ;
Sun, Mengtao ;
Cheng, Guosheng ;
Zhong, Haijian ;
Liu, Zhenghui ;
Zhang, Zhijun ;
Sun, Lianfeng ;
Xu, Hongxing ;
Lu, Li ;
Liu, Liwei .
ADVANCED MATERIALS, 2010, 22 (05) :638-+