Reconstruction, thermodynamics and stability of the ΛCDM model in f (T, τ) gravity

被引:49
作者
Junior, Ednaldo L. B. [1 ,2 ]
Rodrigues, Manuel E. [1 ,3 ]
Salako, Ines G. [4 ]
Houndjo, Mahouton J. S. [4 ,5 ]
机构
[1] Fed Univ Para, PPGF, Fac Fis, BR-66075110 Belem, Para, Brazil
[2] Fed Univ Para, Fac Engn Comp, Campus Univ Tucurui, BR-68464000 Tucurui, Para, Brazil
[3] Fed Univ Para, Fac Ciencias Exatas & Tecnol, Campus Univ Abaetetuba, BR-68440000 Abaetetuba, Para, Brazil
[4] IMSP, 01 BP 613, Porto Novo, Benin
[5] Univ Parakou Benin, Fac Sci & Tech Natitingou, Parakou, Borgou, Benin
关键词
modified gravity; dark energy; cosmology; stability; thermodynamics; DYNAMICAL INSTABILITY; ACCELERATING UNIVERSE; NOETHER SYMMETRY; F(R) GRAVITY; MATTER;
D O I
10.1088/0264-9381/33/12/125006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We reconstruct the Lambda CDM model for f(T, tau) theory, where T is the torsion scalar and. the trace of the energy-momentum tensor. The result shows that the action of Lambda CDM is a combination of a linear term, a constant (-2 Lambda) and a nonlinear term given by the product root TFg [(T-1/3/16 pi G) (16 pi G tau + T + 8 Lambda)], with F-g being a generic function. We show that to maintain conservation of the energy-momentum tensor, we should impose that F-g [y] must be linear on the trace tau. This reconstruction decays in f (T) theory for F-g Q, with Q a constant. Our reconstruction describes the cosmological eras to the present time. The model present stability within the geometric and matter perturbations for the choice F-g y, where y (T-1/3/16 pi G)(16 pi G tau + T+ 8 Lambda), except for the geometric part in the de Sitter model. We impose the first and second laws of thermodynamics to Lambda CDM and find the condition where they are satisfied, that is, T-A, G(eff) > 0, however where this is not possible in the cases that we choose, this leads to a breakdown of positive entropy and Misner-Sharp energy.
引用
收藏
页数:21
相关论文
共 93 条
[1]   Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe [J].
Akbar, M. ;
Cai, Rong-Gen .
PHYSICAL REVIEW D, 2007, 75 (08)
[2]   Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics [J].
Akbar, M ;
Cai, RG .
PHYSICS LETTERS B, 2006, 635 (01) :7-10
[3]   Dynamics of scalar perturbations in f(R, T) gravity (vol 87, 103526, 2013) [J].
Alvarenga, F. G. ;
de la Cruz-Dombriz, A. ;
Houndjo, M. J. S. ;
Rodrigues, M. E. ;
Saez-Gomez, D. .
PHYSICAL REVIEW D, 2013, 87 (12)
[4]  
[Anonymous], 1994, The Early Universe
[5]  
[Anonymous], 2011, EINSTEIN GRAVITY SUR
[6]   Stability of the Einstein static universe in Einstein-Cartan theory [J].
Atazadeh, K. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (06)
[7]   Conformal symmetry and accelerating cosmology in teleparallel gravity [J].
Bamba, Kazuharu ;
Odintsov, Sergei D. ;
Saez-Gomez, Diego .
PHYSICAL REVIEW D, 2013, 88 (08)
[8]   Thermodynamics of cosmological horizons in f(T) gravity [J].
Bamba, Kazuharu ;
Geng, Chao-Qiang .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (11)
[9]   Thermodynamics in f(R) gravity in the Palatini formalism [J].
Bamba, Kazuharu ;
Geng, Chao-Qiang .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (06)
[10]   Equilibrium thermodynamics in modified gravitational theories [J].
Bamba, Kazuharu ;
Geng, Chao-Qiang ;
Tsujikawa, Shinji .
PHYSICS LETTERS B, 2010, 688 (01) :101-109