Comprehensive physiological analyses and reactive oxygen species profiling in drought tolerant rice genotypes under salinity stress

被引:45
|
作者
Basu, Sahana [1 ]
Giri, Ranjan Kumar [2 ]
Benazir, Ibtesham [2 ]
Kumar, Santosh [3 ]
Rajwanshi, Ravi [1 ]
Dwivedi, Sharad Kumar [3 ]
Kumar, Gautam [2 ]
机构
[1] Assam Univ, Dept Biotechnol, Silchar 788011, Assam, India
[2] Cent Univ South Bihar, Dept Life Sci, Patna 800014, Bihar, India
[3] ICAR Res Complex Eastern Reg, Patna 800014, Bihar, India
关键词
Drought; Genotype; Rice; ROS; Salinity; SALT-TOLERANCE; ORYZA-SATIVA; PEROXIDASE-ACTIVITY; LIPID-PEROXIDATION; PLANT-RESPONSES; PROLINE; GENES; CHLOROPLASTS;
D O I
10.1007/s12298-017-0477-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rice being a staple cereal is extremely susceptible towards abiotic stresses. Drought and salinity are two vital factors limiting rice cultivation in Eastern Indo-Gangetic Plains (EIGP). Present study has intended to evaluate the consequences of salinity stress on selected drought tolerant rice genotypes at the most susceptible seedling stage with an aim to identify the potential multi-stress (drought and salt) tolerant rice genotype of this region. Genotypic variation was obvious in all traits related to drought and salt susceptibility. IR84895-B-127-CRA-5-1-1, one of the rice genotypes studied, exhibited exceptional drought and salinity tolerance. IR83373-B-B-25-3-B-B-25-3 also displayed enhanced drought and salt tolerance following IR84895-B-127-CRA-5-1-1. Variations were perceptible in different factors involving photosynthetic performance, proline content, lipid peroxidation, K+/Na+ ratio. Accumulation of reactive oxygen species (ROS) disintegrated cellular and sub-cellular membrane leading to decreased photosynthetic activities. Therefore, accumulation and detoxification of reactive oxygen species was also considered as a major determinant of salt tolerance. IR84895-B-127-CRA-5-1-1 showed improved ROS detoxification mediated by antioxidant enzymes. IR84895-B-127-CRA-5-1-1 seedlings also displayed significant recovery after removal of salt stress. The results established a direct association of ROS scavenging with improved physiological activities and salt tolerance. The study also recommended IR84895-B-127-CRA-5-1-1 for improved crop performance in both drought and saline environments of EIGP. These contrasting rice genotypes may assist in understanding the multiple stress associated factors in concurrent drought and salt tolerant rice genotypes.
引用
收藏
页码:837 / 850
页数:14
相关论文
共 50 条
  • [1] Comprehensive physiological analyses and reactive oxygen species profiling in drought tolerant rice genotypes under salinity stress
    Sahana Basu
    Ranjan Kumar Giri
    Ibtesham Benazir
    Santosh Kumar
    Ravi Rajwanshi
    Sharad Kumar Dwivedi
    Gautam Kumar
    Physiology and Molecular Biology of Plants, 2017, 23 : 837 - 850
  • [2] Physiological and Transcriptomic Characterization of Rice Genotypes under Drought Stress
    Zhu, Qian
    Hassan, Muhammad Ahmad
    Li, Yiru
    Fang, Wuyun
    Wu, Jingde
    Wang, Shimei
    AGRONOMY-BASEL, 2024, 14 (10):
  • [3] Identification of Drought Tolerant Rice Genotypes Based on Morpho-Physiological and Yield Traits Under Normal and Drought Stress Conditions
    Abdelaty, Mohamed S.
    El-Abd, Abdelmoaty B.
    Ibrahim, Magdy H.
    Youssif, Anwar
    Batool, Maria
    Sami, Rokayya
    Ashour, Amal Adnan
    Shafie, Alaa
    Hassan, Hamada M.
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2022, 16 (03) : 390 - 401
  • [4] Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress
    Chhaya Yadav
    Rajeev Nayan Bahuguna
    Om Parkash Dhankher
    Sneh L. Singla-Pareek
    Ashwani Pareek
    Physiology and Molecular Biology of Plants, 2022, 28 : 899 - 910
  • [5] Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress
    Yadav, Chhaya
    Bahuguna, Rajeev Nayan
    Dhankher, Om Parkash
    Singla-Pareek, Sneh L.
    Pareek, Ashwani
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2022, 28 (04) : 899 - 910
  • [6] Physiological Responses under Drought Stress of Improved Drought-Tolerant Rice Lines and their Parents
    Larkunthod, Preeyanuch
    Nounjan, Noppawan
    Siangliw, Jonaliza L.
    Toojinda, Theerayut
    Sanitchon, Jirawat
    Jongdee, Boonrat
    Theerakulpisut, Piyada
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2018, 46 (02) : 679 - 687
  • [7] Mechanisms of reactive oxygen species in plants under drought stress
    Wang, Fuxiang
    Xiao, Kaizhuan
    Jiang, Shenfei
    Qu, Mengyu
    Lian, Ling
    He, Wei
    Chen, Liping
    Xie, Huaan
    Zhang, Jianfu
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (17): : 1765 - 1779
  • [8] Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions
    Kim, Yoonha
    Mun, Bong-Gyu
    Khan, Abdul Latif
    Waqas, Muhammad
    Kim, Hyun-Ho
    Shahzad, Raheem
    Imran, Muhammad
    Yun, Byung-Wook
    Lee, In-Jung
    PLOS ONE, 2018, 13 (03):
  • [9] Role of Reactive Oxygen Species and Contribution of New Players in Defense Mechanism under Drought Stress in Rice
    Qureshi, Muhammad Kamran
    Munir, Sana
    Shahzad, Ahmad Naeem
    Rasul, Sumaira
    Nouman, Wasif
    Aslam, Kashif
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2018, 20 (06) : 1339 - 1352
  • [10] Physiological, biochemical and morphoagronomic characterization of drought-tolerant and drought-sensitive bean genotypes under water stress
    Arruda, Isabella Mendonca
    Moda-Cirino, Vania
    Koltun, Alessandra
    Andrade Pais dos Santos, Odair Jose
    Moreira, Renata Stolf
    Paladini Moreira, Aline Fabiana
    Azeredo Goncalves, Leandro Simoes
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2018, 24 (06) : 1059 - 1067