High-Resolution Field Effect Sensing of Ferroelectric Charges

被引:35
作者
Ko, Hyoungsoo [1 ,2 ]
Ryu, Kyunghee [3 ]
Park, Hongsik [1 ,4 ]
Park, Chulmin [1 ,2 ]
Jeon, Daeyoung [1 ,5 ]
Kim, Yong Kwan [1 ,2 ]
Jung, Juhwan [1 ,2 ]
Min, Dong-Ki [1 ,2 ]
Kim, Yunseok [6 ]
Lee, Ho Nyung [7 ]
Park, Yoondong [1 ,2 ]
Shin, Hyunjung [3 ]
Hong, Seungbum [1 ,8 ]
机构
[1] Samsung Adv Inst Technol, Semicond Device Lab, Yongin 446712, South Korea
[2] Samsung Elect, Semicond R&D Ctr, Yongin 446711, South Korea
[3] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea
[4] Brown Univ, Div Engn, Providence, RI 02912 USA
[5] Korea Univ, Sch Elect Engn, Seoul 136713, South Korea
[6] Max Planck Inst Microstruct Phys, D-06120 Halle, Saale, Germany
[7] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[8] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA
关键词
Charge imaging; field effect; resistive probe; ferroelectric; scanning probe microscopy; MICROSCOPY; NANOSCALE; CONTRAST;
D O I
10.1021/nl103372a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 mu s. On the basis of the calculation of net surface in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 mu C/cm(2), which is equivalent to 1/20 electron per nanometer square at room temperature.
引用
收藏
页码:1428 / 1433
页数:6
相关论文
共 30 条
  • [1] Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures
    Ahn, CH
    Rabe, KM
    Triscone, JM
    [J]. SCIENCE, 2004, 303 (5657) : 488 - 491
  • [2] Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O-3/SrRuO3 heterostructures
    Ahn, CH
    Tybell, T
    Antognazza, L
    Char, K
    Hammond, RH
    Beasley, MR
    Fischer, O
    Triscone, JM
    [J]. SCIENCE, 1997, 276 (5315) : 1100 - 1103
  • [3] Balke N, 2009, NAT NANOTECHNOL, V4, P868, DOI [10.1038/NNANO.2009.293, 10.1038/nnano.2009.293]
  • [4] Time-resolved electrostatic force microscopy of polymer solar cells
    Coffey, David C.
    Ginger, David S.
    [J]. NATURE MATERIALS, 2006, 5 (09) : 735 - 740
  • [5] Controlling energy-level alignments at carbon nanotube/Au contacts
    Cui, XD
    Freitag, M
    Martel, R
    Brus, L
    Avouris, P
    [J]. NANO LETTERS, 2003, 3 (06) : 783 - 787
  • [6] Nanoscale magnetic domains in mesoscopic magnets
    Hehn, M
    Ounadjela, K
    Bucher, JP
    Rousseaux, F
    Decanini, D
    Bartenlian, B
    Chappert, C
    [J]. SCIENCE, 1996, 272 (5269) : 1782 - 1785
  • [7] Principle of ferroelectric domain imaging using atomic force microscope
    Hong, S
    Woo, J
    Shin, H
    Jeon, JU
    Pak, YE
    Colla, EL
    Setter, N
    Kim, E
    No, K
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 89 (02) : 1377 - 1386
  • [8] Hong S., 2006, SCANNING PROBE MICRO, V2, P943
  • [9] Resolution and contrast in Kelvin probe force microscopy
    Jacobs, HO
    Leuchtmann, P
    Homan, OJ
    Stemmer, A
    [J]. JOURNAL OF APPLIED PHYSICS, 1998, 84 (03) : 1168 - 1173
  • [10] Spatial resolution, information limit, and contrast transfer in piezoresponse force microscopy
    Kalinin, S. V.
    Jesse, S.
    Rodriguez, B. J.
    Shin, J.
    Baddorf, A. P.
    Lee, H. N.
    Borisevich, A.
    Pennycook, S. J.
    [J]. NANOTECHNOLOGY, 2006, 17 (14) : 3400 - 3411