共 50 条
Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years
被引:33
|作者:
Collins, James A.
[1
,2
]
Schefuss, Enno
[1
,2
]
Heslop, David
[1
,2
]
Mulitza, Stefan
[1
,2
]
Prange, Matthias
[1
,2
]
Zabel, Matthias
[1
,2
]
Tjallingii, Rik
[3
]
Dokken, Trond M.
[4
]
Huang, Enqing
[1
,2
]
Mackensen, Andreas
[5
]
Schulz, Michael
[1
,2
]
Tian, Jun
[6
]
Zarriess, Michelle
[5
]
Wefer, Gerold
[1
,2
]
机构:
[1] Univ Bremen, MARUM Ctr Marine Environm Sci, D-28359 Bremen, Germany
[2] Univ Bremen, Fac Geosci, D-28359 Bremen, Germany
[3] Royal Netherlands Inst Sea Res, NL-1790 AB Den Burg, Netherlands
[4] Uni Res, BCCR, N-5007 Bergen, Norway
[5] Alfred Wegener Inst Polar & Marine Res, D-27568 Bremerhaven, Germany
[6] Tongji Univ, State Key Lab Marine Geol, Shanghai 200092, Peoples R China
关键词:
LAST GLACIAL MAXIMUM;
INTERTROPICAL CONVERGENCE ZONE;
PMIP2 COUPLED SIMULATIONS;
SOUTHERN AFRICA;
LATE QUATERNARY;
WEST-AFRICA;
HOLOCENE;
CLIMATE;
VEGETATION;
TERRESTRIAL;
D O I:
10.1038/NGEO1039
中图分类号:
P [天文学、地球科学];
学科分类号:
07 ;
摘要:
The distribution of rainfall in tropical Africa is controlled by the African rainbelt(1), which oscillates on a seasonal basis. The rainbelt has varied on centennial to millennial timescales along with changes in Northern Hemisphere high-latitude climate(2-5), the Atlantic meridional overturning circulation(6) and low-latitude insolation(7) over the past glacial-interglacial cycle. However, the overall dynamics of the African rainbelt remain poorly constrained and are not always consistent with a latitudinal migration(2,4-6), as has been proposed for other regions(8,9). Here we use terrestrially derived organic and sedimentary markers from marine sediment cores to reconstruct the distribution of vegetation, and hence rainfall, in tropical Africa during extreme climate states over the past 23,000 years. Our data indicate that rather than migrating latitudinally, the rainbelt contracted and expanded symmetrically in both hemispheres in response to changes in climate. During the Last Glacial Maximum and Heinrich Stadial 1, the rainbelt contracted relative to the late Holocene, which we attribute to a latitudinal compression of atmospheric circulation associated with lower global mean temperatures(10). Conversely, during the mid-Holocene climatic optimum, the rainbelt expanded across tropical Africa. In light of our findings, it is not clear whether the tropical rainbelt has migrated latitudinally on a global scale, as has been suggested(8,9).
引用
收藏
页码:42 / 45
页数:4
相关论文