Frame expansions in separable Banach spaces

被引:83
作者
Casazza, P
Christensen, O
Stoeva, DT
机构
[1] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Univ Architecture Civil Engn & Geodesy, Dept Math, Sofia 1046, Bulgaria
关键词
frames; Banach frames; p-frames; expansions in Banach spaces;
D O I
10.1016/j.jmaa.2005.02.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Banach frames are defined by straightforward generalization of (Hilbert space) frames. We characterize Banach frames (and X-d-frames) in separable Banach spaces, and relate them to series expansions in Banach spaces. In particular, our results show that we can not expect Banach frames to share all the nice properties of frames in Hilbert spaces. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:710 / 723
页数:14
相关论文
共 13 条
[1]   p-frames and shift invariant subspaces of LP [J].
Aldroubi, A ;
Sun, Q ;
Tang, WS .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2001, 7 (01) :1-21
[2]  
Casazza PG, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P271, DOI 10.1016/S1874-5849(01)80009-7
[3]  
Casazza PG., 1999, Contemporary Mathematics, V247, P149, DOI [10.1090/conm/247/03801, DOI 10.1090/CONM/247/03801, DOI 10.1090/C0NM/247/03801.MR1738089]
[4]   p-frames in separable Banach spaces [J].
Christensen, O ;
Stoeva, DT .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :117-126
[5]  
Christensen O, 1997, MATH NACHR, V185, P33
[6]  
Christensen O., 2003, An Introduction to Frames and Riesz Bases, DOI DOI 10.1007/978-0-8176-8224-8
[7]   DESCRIBING FUNCTIONS - ATOMIC DECOMPOSITIONS VERSUS FRAMES [J].
GROCHENIG, K .
MONATSHEFTE FUR MATHEMATIK, 1991, 112 (01) :1-41
[8]  
Heil C., 1997, BASIS THEORY PRIMER
[9]  
Kantorovich LV., 1964, FUNCTIONAL ANAL NORM
[10]  
Lindenstrauss J., 1977, CLASSICAL BANACH SPA, VI