Self heating in AlInN/AlN/GaN high power devices: Origin and impact on contact breakdown and IV characteristics

被引:28
作者
Gonschorek, M. [1 ]
Carlin, J. -F. [1 ]
Feltin, E. [2 ]
Py, M. A. [1 ]
Grandjean, N. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland
[2] NOVAGAN Sarl, CH-1003 Lausanne, Switzerland
关键词
HOT-ELECTRONS; PHONONS;
D O I
10.1063/1.3552932
中图分类号
O59 [应用物理学];
学科分类号
摘要
It is observed experimentally that high electron mobility transistor devices with short channel length processed from nitride AlInN/AlN/GaN heterostructures containing 2D electron gases (2DEGs) with densities beyond 2 x 10(13) cm(-2) exhibit temperatures up to 1000 K if they are driven at high drain-source voltages. Corresponding current-voltage (IV) characteristics show a peaklike behavior with a maximum saturation current (I-DS,I-max) up to 2 A/mm. The goal of this article is to describe device heating in the framework of LO phonon statistics and its dependence on channel length, carrier density, and applied voltage. The strong channel heating, on the other hand, affects the transport mobility and must be taken into account to correctly interpret IV characteristics and resolve the discrepancy with metal oxide semiconductor field effect transistor models. Furthermore, the breakdown of ohmic contacts can directly be related to the channel temperature, i.e., the channel reaches the melting point of the contact metallization. In addition, the model correctly predicts the behavior of IV curves versus 2DEG density and transistor initial ambient temperature. For 2DEGs confined in triangular potential wells formed at the heterointerface, a maximum IDS is found for 2DEG densities between 2 x 10(13) and 3 x 10(13) cm(-2). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3552932]
引用
收藏
页数:8
相关论文
共 20 条
[1]   POLAR OPTICAL-PHONON SCATTERING IN 3-DIMESIONAL AND 2-DIMENSIONAL ELECTRON GASES [J].
GELMONT, BL ;
SHUR, M ;
STROSCIO, M .
JOURNAL OF APPLIED PHYSICS, 1995, 77 (02) :657-660
[2]   High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures [J].
Gonschorek, M. ;
Carlin, J-F. ;
Feltin, E. ;
Py, M. A. ;
Grandjean, N. .
APPLIED PHYSICS LETTERS, 2006, 89 (06)
[3]   Temperature mapping of Al0.85In0.15N/AlN/GaN high electron mobility transistors through micro-photoluminescence studies [J].
Gonschorek, M. ;
Simeonov, D. ;
Carlin, J-F. ;
Feltin, E. ;
Py, M. A. ;
Grandjean, N. .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2009, 47 (03)
[4]   30-nm-gate AlGaN/GaN heterostructure field-effect transistors with a current-gain cutoff frequency of 181 GHz [J].
Higashiwaki, Masataka ;
Mimura, Takashi ;
Matsui, Toshiaki .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2006, 45 (42-45) :L1111-L1113
[5]   Hot phonon effect on electron velocity saturation in GaN: A second look [J].
Khurgin, Jacob ;
Ding, Yujie J. ;
Jena, Debdeep .
APPLIED PHYSICS LETTERS, 2007, 91 (25)
[6]   Power electronics on InAlN/(In)GaN:: Prospect for a record performance [J].
Kuzmík, J .
IEEE ELECTRON DEVICE LETTERS, 2001, 22 (11) :510-512
[7]   VOLGATE-CURRENT CHARACTERISTICS OF GAAS J-FETS IN HOT ELECTRON RANGE [J].
LEHOVEC, K ;
ZULEEG, R .
SOLID-STATE ELECTRONICS, 1970, 13 (10) :1415-&
[8]   Small-signal characteristics of AlInN/GaN HEMTs [J].
Medjdoub, F. ;
Carlin, J. -F. ;
Gonschorek, M. ;
Py, M. A. ;
Grandjean, N. ;
Vandenbrouck, S. ;
Gaquiere, C. ;
Dejaeger, J. C. ;
Kohn, E. .
ELECTRONICS LETTERS, 2006, 42 (13) :779-780
[9]  
Medjdoub F., 2006, P 2006 INT EL DEV M, P1
[10]  
MORKOC H, 2008, POLARIZATION EFFECTS, P403