This paper presents a solution for aero-acoustic problems using the Galbrun equation in the time domain with a non-uniform steady mean flow in a two-dimensional coordinate system and the perfectly matched layer technique as the boundary conditions corresponding to an unbounded domain. This approach is based on an Eulerian-Lagrangian description corresponding to a wave equation written only in terms of the Lagrangian perturbation of the displacement. It is an alternative to the Linearized Euler Equations for solving aero-acoustic problems. The Galbrun equation is solved using a mixed pressure-displacement Finite Element Method. A complex Laplace transform scheme is used to study the time dependent variables. Several numerical examples are presented to validate and illustrate the efficiency of the proposed approach. (C) 2016 Acoustical Society of America.
机构:
Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
ENSTA ParisTech, POEMS UMR CNRS ENSTA INRIA 7231, Palaiseau, FranceVirginia Tech, Dept Math, Blacksburg, VA 24061 USA
Modave, Axel
Lambrechts, Jonathan
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Univ Louvain, Inst Mech Mat & Civil Engn, Louvain La Neuve, BelgiumVirginia Tech, Dept Math, Blacksburg, VA 24061 USA
Lambrechts, Jonathan
Geuzaine, Christophe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Liege, Dept Elect Engn & Comp Sci, Liege, BelgiumVirginia Tech, Dept Math, Blacksburg, VA 24061 USA
机构:
Univ Lorraine, UMR 7502, Inst Elie Cartan Lorraine, Inria Nancy Grand Est, F-54506 Vandoeuvre Les Nancy, FranceUniv Lorraine, UMR 7502, Inst Elie Cartan Lorraine, Inria Nancy Grand Est, F-54506 Vandoeuvre Les Nancy, France
Antoine, Xavier
Lorin, Emmanuel
论文数: 0引用数: 0
h-index: 0
机构:
Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
Univ Montreal, Ctr Rech Math, Montreal, PQ H3T 1J4, CanadaUniv Lorraine, UMR 7502, Inst Elie Cartan Lorraine, Inria Nancy Grand Est, F-54506 Vandoeuvre Les Nancy, France