On pseudorandom [0,1) and binary sequences

被引:0
作者
Mauduit, Christian
Niederreiter, Harald
Sarkozy, Andras
机构
[1] CNRS, UMR 6206, Inst Math Luminy, F-13288 Marseille 9, France
[2] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[3] Eotvos Lorand Univ, Dept Algebra & Number Theory, H-1117 Budapest, Hungary
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2007年 / 71卷 / 3-4期
关键词
uniform pseudorandom sequences; pseudorandom binary sequences; discrepancy; correlation measures; linear congruential method; legendre symbol sequences;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies links between uniform pseudorandom sequences of real numbers in [0, 1) and pseudorandom binary sequences. It is proved that good pseudorandom [0, 1) sequences induce binary sequences that have small correlation and well-distribution measures. On the other hand, given a binary sequence with small combined well-distribution-correlation measure, it is shown how to construct a [0, 1) sequence with small discrepancy. The special cases of linear congruential pseudorandom sequences and of Legendre symbol sequences are analyzed in more detail.
引用
收藏
页码:305 / 324
页数:20
相关论文
共 23 条
  • [1] ALON N, MEASURES PSEUDORANDO
  • [2] Modeling and optimal regulation of erythropoiesis subject to benzene intoxication
    Banks, HT
    Cole, CE
    Schlosser, PM
    Tran, HT
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2004, 1 (01) : 15 - 48
  • [3] On finite pseudorandom binary sequences VII:: The measures of pseudorandomness
    Cassaigne, J
    Mauduit, C
    Sárközy, A
    [J]. ACTA ARITHMETICA, 2002, 103 (02) : 97 - 118
  • [4] Gentle J. E., 2003, RANDOM NUMBER GENERA
  • [5] Construction of large families of pseudorandom binary sequences
    Goubin, L
    Mauduit, C
    Sárközy, A
    [J]. JOURNAL OF NUMBER THEORY, 2004, 106 (01) : 56 - 69
  • [6] On the correlation of binary sequences
    Gyarmati, K
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2005, 42 (01) : 79 - 93
  • [7] Gyarmati K., 2003, ANN U SCI BUDAP, V46, P157
  • [8] Knuth D. E., 2014, Seminumerical algorithms, V2
  • [9] Korobov N. M., 1992, Mathematics and Its Applications, Soviet Series, V80
  • [10] KUIPERS L, 1974, UNIFORM DISTRIBUTION